
D13287GC10
Production 1.0
February 2002
D34456

Oracle9i Database: Implement
Partitioning

Student Guide

Authors
Michael Möller
Jim Womack

Technical Contributors
and Reviewers

Herman Baer
Joel Goodman
Stefan Lindbald
Magnus Isakkson
Jean-François Verrier
Alex Melidis
Ananth Raghavan

Publisher
Shane Mattimoe

Copyright © Oracle Corporation 2000,2001,2002 All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Oracle Education
Products, Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA
94065. Oracle Corporation does not warrant that this document is error-free.

Oracle and all references to Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Preface

1 Introduction to Partitioning
Objectives 1-2
VLDB Manageability and Performance Constraints 1-3
Manual Partitions 1-4
Partitioned Tables and Indexes 1-5
Benefits of Partitioning: Table Availability 1-6
Benefits of Partitioning: Large Table Manageability 1-7
Manageability: Relocate Table Data 1-8
Manageability: Rolling Window Operations 1-9
Manageability: Clearly Defined Record Subsets 1-10
Benefits of Partitioning: Performance Considerations 1-11
Performance Consideration: Partition Pruning 1-12
Performance Consideration: Parallel DML 1-13
Performance Consideration: Device Load Balancing 1-14
Performance Improvement: Real Application Clusters 1-15
Table Versus Index Partitioning 1-16
Partitioning Methods 1-17
Partitioned Indexes 1-19
Verifying Partition Use 1-20
Proof of Pruning 1-21
SQL*Loader and Partitioned Objects 1-23
Summary 1-24
Practice Overview: Identifying Partitioning Benefits 1-25

2 Implementing Partitioned Tables
Objectives 2-2
The CREATE TABLE Statement with Partitioning 2-3
Logical and Physical Attributes 2-4
Partitioning Type 2-5
Specifying Partition Attributes 2-6
Partition Key Value 2-7
Range Partitioning 2-8
Range Partitioning Example 2-9
Multicolumn Partitioning 2-10
Multicolumn Example 2-11
List Partitioning 2-13
Hash Partitioning, Named Partitions 2-14
Hash Partitioning: Quantity of Partitions 2-15

Contents

iii

Composite Partitioning 2-16
Composite Partitioning: Another Example 2-17
Index Organized Table (IOT) Partitioning 2-18
OVERFLOW Segment Partitioning 2-19
OVERFLOW Segment Example 2-20
LOB Partitioning 2-21
LOB Segment Example 2-22
Partitioned Object Tables and Partitioned Tables with Object Types 2-23
Updateable Partition Keys 2-24
Row Movement 2-25
Row Movement Example 2-26
Equipartitioning 2-27
Partition Extended Table Names 2-28
General Restrictions 2-29
Table, Partition, and Segment Relations 2-30
Data Dictionary Views Tables 2-31
Data Dictionary Views Segments 2-34
Summary 2-36
Practice Overview: Creating Partitioned Tables 2-37

3 Implementing Partitioned Indexes
Objectives 3-2
Partitioned Indexes 3-3
Partitioned Index Attributes: Global or Local 3-4
Partitioned Index Attributes: Prefixed or Nonprefixed 3-5
Index Partitioning Types 3-6
Global Indexes 3-7
Global Index Example 3-8
Local Prefixed Index 3-9
Local Prefix Index Examples 3-10
Local Nonprefixed Index 3-11
Local Nonprefix Index Example 3-12
Index Partitioning and Type Matrix 3-13
Specifying Index with Table Creation 3-14
Graphic Comparison of Partitioned Index Types 3-15
Index Partition Status 3-16
Index Partition UNUSABLE 3-17
Data Dictionary Views Indexes 3-18
Guidelines for Partitioning Indexes 3-19
Summary 3-21
Practice Overview: Creating Partitioned Indexes 3-22

iv

4 Maintenance of Partitioned Tables and Indexes
Objectives 4-2
Maintenance Overview 4-3
Table and Index Interaction During Partition Maintenance 4-4
Modifying a Table or Indexing Logical Properties 4-5
Modifying Partition Properties on the Table 4-6
Using the ALTER TABLE or INDEX Commands 4-7
Renaming a Partition 4-8
Partition Storage Changes 4-9
Moving a Partition 4-10
Moving a Partition: Example 4-11
Adding a Partition 4-12
When to Add a Partition 4-13
Adding a Partition: Examples 4-14
Adding a Subpartition: Example 4-15
Dropping a Partition 4-16
When to Drop a Partition 4-17
Dropping a Partition: Examples 4-18
Splitting and Merging a Partition 4-19
Splitting and Merging: List Partitions 4-20
Splitting and Merging: Range Partitions 4-21
Altering List Partition Key Values 4-22
Coalescing a Partition 4-23
Coalescing a Partition: Examples 4-24
Exchanging a Partition with a Table 4-25
Exchanging a Partition: Example 4-26
Rebuilding Indexes 4-27
Rebuilding an Index: Examples 4-28
Benefits and Costs of UPDATE GLOBAL INDEXES 4-29
IOT Overflow and LOB Segments 4-30
Summary 4-31
Practice Overview: Altering Table and Index Partition Attributes 4-32

5 Partitioning Interaction
Objectives 5-2
Using Partitioned Tables 5-3
Pruning Rules 5-4
Partition-wise Joins 5-5
ANALYZE and Partitioned Objects 5-6
Data Dictionary View Statistics 5-8
SQL*Loader and Partitioned Objects 5-9
SQL*Loader Conventional Path 5-10
SQL*Loader Direct Path Sequential Loads 5-11
SQL*Loader Direct Path Parallel Loads 5-12

v

Export and Import 5-13
Export 5-14
Import 5-15
Partitioning and Transporting Tablespaces 5-16
Self-Contained Check 5-17
Online Table Redefinition 5-18
Parallel Execution and Partitioning 5-19
Parallelizable Operations 5-20
Enabling Parallel Execution 5-21
OEM Schema Management Window 5-23
Summary 5-24
Practice Overview: Working with Partitioned Tables and Indexes 5-25

6 Practical Partitioning
Objectives 6-2
Areas of Benefit 6-3
Applications and Partitioning Strategies 6-4
Segmentation: Example 6-5
Application Partitioning: Step 1 6-6
Application Partitioning: Step 2 6-7
Application Partitioning: Step 3 6-8
Application Partitioning: Step 4 6-9
Application Partitioning: Step 5 6-10
Application Partitioning: Step 6 6-11
Configuration 1 6-12
User or Departmental Partitioning 6-13
Configuration 2 6-14
Application of Partition Types 6-15
Range Partitioning 6-16
Hash Partitioning 6-17
List Partitioning 6-18
Composite Partitioning 6-19
Analyzing Availability Requirements 6-20
Horizontal and Vertical Table Partitions 6-21
Collecting Statistics for Partitioned Objects 6-23
DBMS_STATS Examples 6-24
Parallel Index Scans 6-26
Summary 6-27
Practice Overview: Partitioning Applications 6-28

Appendix A: Practices

Appendix B: Solutions

vi

Preface

Preface - 2

Preface - 3

Profile

Prerequisites
• Oracle9i Database Administration Fundamentals I (D11321GC11)
• Oracle9i Database Administration Fundamentals II (D11297GC11)

Suggested Prerequisites
• Oracle9i Database Performance Tuning (D11299GC11)

Suggested Next Course
• Oracle9i: Data Warehouse Administration (D13289GC10)

How This Course Is Organized
This is an instructor-led course featuring lecture and hands-on exercises. Online demonstrations and
written practice sessions reinforce the concepts and skills introduced.

Preface - 4

Related Publications
Reference Material

• Oracle9i SQL Reference [A90125-01]
• Oracle9i Database Reference [A90190-02]
• Oracle9i Supplied PL/SQL Packages and Types Reference [A89852-02]

Suggested Reading
• Oracle9i Database Administrator’s Guide, chapter 17 [A90117-01]
• Oracle9i Database Concepts, chapter 12 [A88856-02]
• Oracle9i Data Warehousing Guide, chapter 5 [A90237-01]

Oracle Publications
• System release bulletins
• Installation and user’s guides
• read.me files
• International Oracle User’s Group (IOUG) articles
• Oracle Magazine

Oracle9i Database: Implement Partitioning 1-1

Copyright © Oracle Corporation, 2002. All rights reserved.

Introduction to Partitioning

Oracle9i Database: Implement Partitioning 1-2

1-2 Copyright © Oracle Corporation, 2002. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the partitioning architecture, uses, and

advantages
• Describe the partition types supported by Oracle

RDBMS

Lesson Content
This lesson will address generalities and the basic functionality of partitioning in Oracle9i.
Specific syntax, specifications and limitations is covered in upcoming lessons.

Oracle9i Database: Implement Partitioning 1-3

1-3 Copyright © Oracle Corporation, 2002. All rights reserved.

VLDB Manageability and
Performance Constraints

• Table availability:
– Large tables are more vulnerable to disk failure.
– It is too costly to have a large table inaccessible for

hours due to recovery.
• Large table manageability:

– They take too long to be loaded.
– Indexes take too long to be built.
– Partial deletes take hours, even days.

• Performance considerations:
– Large table and large index scans are costly.
– Scanning a subset improves performance.

What Is a VLDB?
A VLDB is a very large database that contains hundreds of gigabytes or even terabytes of
data. VLDBs typically owe their size to a few very large tables and indexes rather than a
very large number of objects. Below are some typical situations that make it hard to work
with VLDBs:

• A disk failure renders a big table inaccessible. The table may be striped over many disks.
Users may still need to access the subset of rows unaffected by disk failure.

• Reloading or rebuilding large tables and indexes can greatly exceed any of the
company’s downtime allowances.

• In a data warehouse environment, users might query the most recent data more intensely
than older data. It would be advantageous to tune the database to meet this pattern of
behavior.

Oracle9i Database: Implement Partitioning 1-4

1-4 Copyright © Oracle Corporation, 2002. All rights reserved.

Manual Partitions

SALES_99 SALES_00 SALES_01

SALES

P00P99 P01

Manual
partitions
(tables)

UNION

Manual Methodology
Prior to the introduction of Oracle Partitioning, manageability constraints were addressed by
manually splitting up tables into subsets. Union views were used to mimic the overall table.
This had some disadvantages:

• Query optimization and tuning was complex.
• Every manual partition (table) had its own metadata definition, making administration

cumbersome.
• Overall primary key and unique constraints were hard or impossible to implement.

Example:

Partitioning provides a far better way of breaking down tables into manageable pieces.

CREATE VIEW accounts AS
SELECT * FROM accounts_jan00
UNION ALL
SELECT * FROM accounts_feb00
UNION ALL
...
SELECT * FROM accounts_dec00;

Oracle9i Database: Implement Partitioning 1-5

1-5 Copyright © Oracle Corporation, 2002. All rights reserved.

Partitioned Tables and Indexes

Large tables and indexes can be partitioned into
smaller, more manageable pieces.

Table T1 Index I1

Table T1 Index I1

Partitioned Tables and Indexes
Partitioned tables allow your data to be broken down into smaller, more manageable pieces
called partitions, or even subpartitions. Indexes can be partitioned in similar fashion. Each
partition can be managed individually, and can function independently of the other partitions,
thus providing a structure that can be better tuned for availability and performance.
Partitioning is transparent to existing applications as is standard DML statements run against
partitioned tables. However, applications can be enhanced to take advantage of partitioning
by using partition-extended table or index names in the application DML.

Oracle9i Database: Implement Partitioning 1-6

1-6 Copyright © Oracle Corporation, 2002. All rights reserved.

Benefits of Partitioning:
Table Availability

• Partitions can be independently managed.
• Backup and restore operations can be done on

individual partitions.
• Partitions that are unavailable do not affect queries

or DML operations on other partitions that use the
same table or index.

Index I1Table T1

High Availability
Dividing tables and indexes into smaller partitions improves availability of data because if
one partition is unavailable, other partitions can be used.
Assume that we have a large table divided into 4 partitions, each residing on a different disk.
If recovery must done on one tablespace that holds only the third partition of a total of 4,
then partitions 1, 2, and 4 can be accessed simultaneously.
Partitions can also be located in tablespaces that have been made read-only or taken offline.
This affects only the partitions in question; all other partitions can still be accessed normally.

Oracle9i Database: Implement Partitioning 1-7

1-7 Copyright © Oracle Corporation, 2002. All rights reserved.

Benefits of Partitioning:
Large Table Manageability

Oracle provides a variety of methods and commands
to manage partitions:
• A partition can be moved from one tablespace to

another.
• A partition can be divided at a user-defined value.
• Partitioning can isolate subsets of rows that must

be treated individually.
• A partition can be dropped, added, or truncated.
• SELECT, UPDATE, INSERT, and DELETE operations

can be applied on a partition level instead of a table
level.

Ease of Administration
Oracle supports many commands for manipulating partitions, for example:

• ALTER TABLE ADD PARTITION
• ALTER TABLE DROP PARTITION (RANGE)
• ALTER TABLE TRUNCATE PARTITION (RANGE)
• ALTER TABLE MOVE PARTITION
• ALTER TABLE SPLIT PARTITION
• ALTER TABLE EXCHANGE PARTITION
• Supporting commands for partition indexes

All of these commands are covered in later lessons.

Oracle9i Database: Implement Partitioning 1-8

1-8 Copyright © Oracle Corporation, 2002. All rights reserved.

Manageability:
Relocate Table Data

Moving Table Data
Prior to partitioning, it was only possible to relocate table data in a record-by-record fashion,
unless you used a direct load method. Now there are several ways to move sets of table rows
online.
It is possible to physically move:

• A table partition from one tablespace to another.
• A table partition from one database to another.

You can also:
• Logically convert a table partition into a table.
• Logically convert a table into a table partition.
• Modify physical attributes of a table partition.

Oracle9i Database: Implement Partitioning 1-9

1-9 Copyright © Oracle Corporation, 2002. All rights reserved.

Manageability:
Rolling Window Operations

OCT00

JUL01

Timeline Databases
Rolling window tables and tables that grow in a linear fashion along business-relevant
periods are probably the best example for using partitions:

• Partitions turn costly deleting of individual rows into simple dictionary operations.
• Adding 10,000 rows to a table can be as simple as adding the extents of an already

loaded table to an existing partitioned table, thus converting them to a table partition.
Again, this is just a dictionary operation.

• Index management can be automated. Purging October 2000 table partition entries and
all relevant index entries can be done with one ALTER TABLE statement.

• Creating index entries for the July 2001 table can be done without affecting the existing
index entries to the rest of the table.

• DBAs can use SELECT, INSERT, UPDATE, and DELETE on individual partitions.

Oracle9i Database: Implement Partitioning 1-10

1-10 Copyright © Oracle Corporation, 2002. All rights reserved.

Manageability:
Clearly Defined Record Subsets

Read-only

Export/import

Reorganization

Data Exchange

Record Subsets
Partitions help isolate any subset of rows that has to be treated individually without affecting
the rest of the table:

• Read-only record subsets can be isolated and put into read-only tablespaces.
• Subsets of rows can be easily exported without index or table scanning.
• Subsets of rows can be easily imported without affecting access to the rest of the table.
• Subsets of rows can be reorganized individually, again without affecting the rest of the

table.
• Subsets of rows can be converted into a table using a simple dictionary operation.

Oracle9i Database: Implement Partitioning 1-11

1-11 Copyright © Oracle Corporation, 2002. All rights reserved.

Benefits of Partitioning:
Performance Considerations

• The optimizer eliminates (prunes) partitions that do
not need to be scanned.

• Partitions can be scanned, updated, inserted, or
deleted in parallel.

• Join operations can be optimized to join “by the
partition”.

• Partitions can be load-balanced across physical
devices.

• Large tables within Real Application Clusters
environments can be partitioned.

Improved Performance
The optimizer is aware of the following points when accessing a partitioned table or index:

• If WHERE clauses are specified in a SQL statement, the optimizer can evaluate the
statement and based on values, prune partitions that do not need to be accessed.

• Queries and DML operations are narrowed down to partition-level instead of full
table/index scan.

• Partition-wise joins are used when the tables are partitioned by the join key. This speeds
the join operation, because the amount of data exchanged between query slaves is
reduced.

• When the optimizer does sorting, it can apply to partitions instead of to the whole table,
causing less temporary sort area in most cases.

• Users can map different partitions to different tablespaces, allowing frequently accessed
data to reside on the fastest disks.

• Bulk and maintenance operations can be applied to smaller units of storage.
• Oracle Real Application Clusters can enforce ownership of data by a specific node.

Oracle9i Database: Implement Partitioning 1-12

1-12 Copyright © Oracle Corporation, 2002. All rights reserved.

Partition pruning: only the relevant
partitions are accessed

Sales

01-May

01-Apr

01-Feb

01-Jan

01-Mar

01-Jun

SQL> SELECT SUM(amount_sold)

2 FROM sales

3 WHERE time_id BETWEEN

4 TO_DATE('01-MAR-2000',

5 'DD-MON-YYYY') AND

6 TO_DATE('31-MAY-2000',

7 'DD-MON-YYYY');

Performance Consideration:
Partition Pruning

Partition Pruning
Depending on the SQL statement, the Oracle server can explicitly recognize partitions and
subpartitions that need to be accessed and the ones that can be eliminated. This optimization
is called partition pruning. This can result in substantial improvements in query performance.
However, the optimizer cannot prune partitions if the SQL statement applies a function to
the partitioning column.
Pruning is expressed using a range of partitions, and the relevant partitions for the query are
all the partitions between the first and the last partition of that range. This allows pruning for
conjunctive predicates such as c > 10 and c < 20 but not for disjunctive predicates such as c
in (10,30) or (c > 10 and c < :B1) or (c > :B2 and c < 1000).

Oracle9i Database: Implement Partitioning 1-13

1-13 Copyright © Oracle Corporation, 2002. All rights reserved.

Performance Consideration:
Parallel DML

P001 P002 P003 P004 P005

Update

Parallel DML
Parallelizing DML activities allows for more efficient CPU allocation thus cutting down on
the elapsed time for the operation. More row operations can run at the same time without
causing contention.

Oracle9i Database: Implement Partitioning 1-14

1-14 Copyright © Oracle Corporation, 2002. All rights reserved.

Performance Consideration:
Device Load Balancing

Table Striping using Partitions
With older versions of Oracle, it was hard to stripe a table evenly across disks. It was
possible to stripe the initial load across several files in a tablespace. Unfortunately
interactive inserts could not be distributed across disks. In OLTP environments it is often
crucial to allow for many inserts at peak activity time. Breaking up your target tables into
partitions allows you to avoid bottlenecks.
The illustration above shows a configuration with four partitions, each spread out across two
disks. A single disk failure affects just one partition.

Oracle9i Database: Implement Partitioning 1-15

1-15 Copyright © Oracle Corporation, 2002. All rights reserved.

Performance Improvement:
Real Application Clusters

Real Application Clusters
Proper implementation of partitioning can complement the Real Application Clusters
environment. It is important to analyze row usage carefully to choose the best way of
segmenting user access and row placement using partitions.

Oracle9i Database: Implement Partitioning 1-16

1-16 Copyright © Oracle Corporation, 2002. All rights reserved.

Table Versus Index Partitioning

A nonpartitioned table can
have partitioned or
nonpartitioned indexes.

A partitioned table can
have partitioned or
nonpartitioned indexes.

Table T1

Index I1 Index I2

Table T2

Index I3 Index I4

Table and Index Partitioning
In general, you can mix partitioned and nonpartitioned indexes with partitioned and
nonpartitioned tables.

• A partitioned table can have partitioned and nonpartitioned indexes.
• A nonpartitioned table can have partitioned and nonpartitioned indexes.
• Bitmap indexes on nonpartitioned tables cannot be partitioned.

However there are design considerations that should be made based on performance,
availability, and manageability.

Oracle9i Database: Implement Partitioning 1-17

1-17 Copyright © Oracle Corporation, 2002. All rights reserved.

Partitioning Methods

Range
partitioning

Hash
partitioning

Composite
partitioning

List
partitioning

The following partitioning methods are available:

Range Partitioning
Range partitioning uses ranges of column values to map rows to partitions. Range partitions
are ordered and this ordering is used to define the lower and upper boundary of a specific
partition. Partitioning by range is well suited for historical databases. However, it is not
always possible to know beforehand how much data will map into a given range, and in
some cases, sizes of partitions may differ quite substantially, resulting in sub-optimal
performance for certain operations like parallel DML.
Range partitioning, and partitioning in general, is available in Oracle8 and later versions.

Hash Partitioning
This method uses a hash function on the partitioning columns to stripe data into partitions. It
controls the physical placement of data across a fixed number of partitions and gives you a
highly tunable method of data placement.
Hash partitioning is available in Oracle8i and later versions.

Oracle9i Database: Implement Partitioning 1-18

Composite Partitioning
This method partitions data by using the range method and, within each partition, sub-
partitions it by using the hash method. This type of partitioning supports historical operations
data at the partition level and parallelism (parallel DML) and data placement at the sub-
partition level.
Composite partitioning is available in Oracle8i and later versions.

List Partitioning
The LIST method allows explicit control over how rows map to partitions. This is done by
specifying a list of discrete values for the partitioning column in the description for each
partition.
LIST partitioning is different from RANGE partitioning where a range of values is associated
with a partition, and from HASH partitioning where the user has no control of the row-to-
partition mapping. This partition method allows the modeling of data-distributions that
follow discrete values that are unordered and unrelated sets of data. These can be grouped
and organized together very naturally, using LIST partitioning.
List partitioning is available in Oracle9i and later versions.

Oracle9i Database: Implement Partitioning 1-19

1-19 Copyright © Oracle Corporation, 2002. All rights reserved.

Partitioned Indexes

• Indexes can be either partitioned or nonpartitioned.
• Choice of indexing strategy allows greater flexibility

to suit database and application requirements.
• Indexes can be partitioned with the exception of

cluster indexes.
• The same rules apply for indexes as for tables.

Partitioned Indexes
The rules for partitioning indexes are similar to those for tables. Indexes can be either
partitioned or nonpartitioned. Database administrators and application developers need to
analyze their indexing needs for their application.
Considerations include the following:

• Type of access to data through the applications
• Performance in accessing data
• Availability in case of disk failure
• Are parallel operations possible?

All of these issues will influence your choice of an indexing strategy.

Oracle9i Database: Implement Partitioning 1-20

1-20 Copyright © Oracle Corporation, 2002. All rights reserved.

Verifying Partition Use

• Examining ROWID will confirm the physical
placement of the row.

• Examining execution plans will confirm partition
pruning.

Verifying Partition Use
The storage of each row in its correct partition can be verified by examining the ROWID.
The DBMS_ROWID package is used to decode the file and block number of the row.
The EXPLAIN PLAN or other SQL tracing mechanisms can be used to verify that the
appropriate partitions are being used in a query or DML. SQL*Plus’ AUTOTRACE does
not show partition usage.

Oracle9i Database: Implement Partitioning 1-21

1-21 Copyright © Oracle Corporation, 2002. All rights reserved.

Proof of Pruning

Proof of partition elimination or pruning may be
obtained:
• By using tkprof
• Through the explain plan
• By setting event 10128

Proof of Pruning
Pruning is the process wherein the optimizer transparently eliminates partitions from the
partition access list. A common example involves sales data, partitioned quarterly. Without
table partitioning, you may be required to scan the entire table for dates falling within a
particular quarter. With partition pruning, the optimizer will only scan the partition with the
relevant range of dates. The partition key does not have to be a date column. The following
example uses the explain plan to illustrate partition pruning on a range-partitioned table:
Create the table, four partitions:
SQL> create table range_part (col1 number(9))

2 partition by range (col1)
3 (partition p1 values less than (10) tablespace system,
4 partition p2 values less than (20) tablespace system,
5 partition p3 values less than (30) tablespace users,
6 partition p4 values less than (MAXVALUE) tablespace users);

Insert one row per partition:
SQL> insert into range_part values (1);
SQL> insert into range_part values (11);
SQL> insert into range_part values (21);
SQL> insert into range_part values (31);
SQL> commit;

Oracle9i Database: Implement Partitioning 1-22

Proof of Pruning (continued)
Explain a query that will access a single partition:
SQL> EXPLAIN PLAN
2 set statement_id = 'range_part'
3 FOR
4 SELECT *
5 FROM range_part
6 WHERE col1 = 15;

Review the explain plan to verify that partition pruning will occur:
SQL> SELECT LPAD(' ', 2*(LEVEL-1))||operation operation,
2 options || '(' || object_name || ')' options, position,
3 PARTITION_START "START", PARTITION_STOP "STOP"
4 FROM plan_table
5 START WITH id = 0 AND statement_id = 'range_part'
6 CONNECT BY PRIOR id = parent_id AND statement_id = 'range_part'
7 /

OPERATION OPTIONS POSITION START STOP
---------------- ---------------- ---------- ----- ----
SELECT STATEMENT () 1
TABLE ACCESS FULL (RANGE_PART) 1 2 2

Pruning proof using tkprof:
SQL> alter session set sql_trace = true;

SQL> SELECT *
2 FROM range_part
3 WHERE col1 = 15;

SQL> !tkprof *.trc 1ist.out explain=sys/change_on_install

Partial tkprof output:
Rows Row Source Operation
------- ---

0 TABLE ACCESS FULL RANGE_PART PARTITION: START=2 STOP=2

Rows Execution Plan
------- ---

0 SELECT STATEMENT GOAL: CHOOSE
0 TABLE ACCESS (FULL) OF 'RANGE_PART' PARTITION: START=2 STOP=2

Oracle9i Database: Implement Partitioning 1-23

1-23 Copyright © Oracle Corporation, 2002. All rights reserved.

SQL*Loader and Partitioned Objects

• You can load a partitioned table through the
conventional path.

• You can sequentially load a partitioned table
through the direct path.

• You can parallel load a single table partition through
the direct path.

SQL*Loader Partitioned Object Support
SQL*Loader can load the following:

• A single partition or subpartition of a partitioned table. This can be done by specifying
the partition- or subpartition-extended table name in the INTO TABLE clause

• All partitions of a partitioned table. No new syntax is needed.

SQL*Loader Partitioned Object Support in All Paths (Modes)
• Conventional Path: Changed minimally as far back as Oracle7, because mapping a row

to a partition or subpartition is handled transparently by SQL.
• Direct Path: When loading a direct path in a single partition, consider the following

items:
- Local indexes can be maintained by the load.
- Global indexes cannot be maintained by the load.

• Parallel Direct Path: When loading a parallel direct path in a single partition, consider
that neither local or global indexes can be maintained by the load.

Parallel direct path loads are used for intrasegment parallelism. Intersegment parallelism can
be achieved by concurrent single partition direct path loads, with each load session loading a
different partition of the same table.

Oracle9i Database: Implement Partitioning 1-24

1-24 Copyright © Oracle Corporation, 2002. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Describe the partitioning architecture, uses, and

advantages
• Describe the partition types supported by Oracle

RDBMS

Oracle9i Database: Implement Partitioning 1-25

1-25 Copyright © Oracle Corporation, 2002. All rights reserved.

Practice Overview:
Identifying Partitioning Benefits

This written practice covers the following topics:
• Advantages of Oracle partitioning over manual

partitioning
• Benefits to the database administrator when

partitioning large tables and indexes
• Partitioning pruning concepts

Written Exercises
This lesson has no practices, but a few review questions.

Oracle9i Database: Implement Partitioning 1-26

Copyright © Oracle Corporation, 2002. All rights reserved.

Implementing Partitioned Tables

Oracle9i Database: Implement Partitioning 2-2

2-2 Copyright © Oracle Corporation, 2002. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the partitioning types
• List all of the options for creating a partitioned table
• Create partitioned tables
• Use the data dictionary to verify the partitioned

table structure

Oracle9i Database: Implement Partitioning 2-3

2-3 Copyright © Oracle Corporation, 2002. All rights reserved.

SQL> CREATE TABLE simple
2 (idx NUMBER, txt VARCHAR2(20))
3 PARTITION BY RANGE (idx)
4 (PARTITION VALUES LESS THAN (0)
5 TABLESPACE data01
6 , PARTITION VALUES LESS THAN (MAXVALUE)
7) ;

The CREATE TABLE Statement
with Partitioning

An example:

Creating a Partitioned Table
This is a simple example. It is a range-partitioned table, in which all rows that contain a
negative number in the idx column are stored in the first partition, which is stored in the
DATA01 tablespace. All other rows, including those with NULL in the idx column, are
stored in the other partition that is stored in the users default tablespace. Queries on this
table will have the benefit of partition pruning and other partition-related performance
improvements, if appropriate.

General Syntax
A partitioned table declaration contains three elements:

• The logical structure of the table
• The partition structure, which defines the type and columns
• The structure of each table partition, which has two parts:

- The logical bounds
- The physical storage attributes

Version Notes
Real partitioning was not available before Oracle8. Later Oracle7 versions supported
Partition Views.

Oracle9i Database: Implement Partitioning 2-4

2-4 Copyright © Oracle Corporation, 2002. All rights reserved.

Logical and Physical Attributes

Logical attributes:
• Normal table structure (columns, constraints)
• Partition type
• Keys and values
• Row movement

Physical attributes:
• Tablespace
• Extent sizes, block attributes

Logical and Physical Attributes
When specifying a partitioned table or index, the single statement can specify several
attributes. These can easily be divided into those attributes that declare something logical
about the table or partition, and those that specify something about the physical storage or
manipulation of the table partitions.
Generally, the logical attributes pertain to the table as a whole and will be declared first,
while the physical attributes pertain to each partition. Physical storage attributes declared on
the table are used as the default values for the partitions.

Normal table structure
There is no change in the way the normal structure of the table is declared when the table is
partitioned. The partition clause can simply be appended to an existing table creation script.
Partitioned tables can also be created with the AS SELECT clause.

Storage clauses
The storage clauses that can be applied to each table partition are the same storage clauses
that can be applied to a normal table, such as TABLESPACE, STORAGE (INITIAL, NEXT),
and PCTFREE. Therefore, storage clause functionality is not explained further in this course.

Oracle9i Database: Implement Partitioning 2-5

2-5 Copyright © Oracle Corporation, 2002. All rights reserved.

Partitioning Type

The Partitioning type is declared in the PARTITION
clause.

SQL> CREATE TABLE (… column …)
2 PARTITION BY RANGE (column_list)
3 (PARTITION specifications) ;

2 PARTITION BY HASH (column_list)

2 PARTITION BY LIST (column)

2 PARTITION BY RANGE (column_list)
SUBPARTITION BY HASH (column_list2)

Partitioning Types
The four types of partitioning are declared in the PARTITION BY partition clause.
The Composite partitioning is limited to being a RANGE partition on the top level, and
HASH partitioning on the sublevel.

Multicolumn Partition Key
The Partition Key can consists of several columns, analogous to composite column indexes,
except for list partitions. This will be discussed later.

Table Type
Partitioning can be applied to normal heap organized tables and to Index Organized Tables
(IOTs). IOTs cannot be list-partitioned.
Clustered tables cannot be partitioned.
Materialized Views (snapshots) can be partitioned.

Oracle9i Database: Implement Partitioning 2-6

2-6 Copyright © Oracle Corporation, 2002. All rights reserved.

Specifying Partition Attributes

Each Partition is specified in a partition value clause.

There can be up to 65535 partitions per table.

…
PARTITION simple_p1 VALUES ('HIGH', 'MED')

TABLESPACE data01 PCTFREE 5
, PARTITION simple_p2 VALUES ('LOW')

TABLESPACE data02 STORAGE (INITIAL 1M)
…

Specifying Partition Attributes
The code example fragment shows two partitions being specified in a list-partitioned table.
The general structure is a comma separated list:

PARTITION name partition-key-value storage-attributes

The Partition Name is optional. If omitted, the system names it SYS_Pnnnn where nnnn
is a unique number. Segment names and partition names are distinct. Partition names must
only be unique for the table they belong to.
The Partition Key Value specification must correspond in type and number to the partition
key definition. These must be literals, and not be dependent on the environment; for
example, format masks. To avoid such dependencies, use explicit conversion functions. The
precise syntax varies with the partition type.
The storage attributes syntax is the same as used on normal tables, and is optional and
separate for each partition. Defaults are taken from the table declaration, if they are listed
there; otherwise, they are taken from tablespace or server defaults as usual. There is no
requirement that a separate tablespace must be declared for each partition, but it is usually
useful.

Oracle9i Database: Implement Partitioning 2-7

2-7 Copyright © Oracle Corporation, 2002. All rights reserved.

Partition Key Value

• The partition key value must be a literal.
• Constant expressions are not allowed, with the

exception of TO_DATE conversion.
• The partition key can consist of up to 16 columns

Partition Key Values
The partition key values must be literals. Even simple expressions are not allowed, such as:

3+5, TO_NUMBER('67'), or ASCII('G')

The exception is the TO_DATE conversion function, which is used to specify a date literal,
when the partition key is of the DATE type. The purpose is to be able to specify the NLS
formatting to interpret the date string:

TO_DATE('27-12-2002', 'dd-mm-yyyy', 'nls_calendar=gregorian')

If this is not done, the CREATE statement will rely on the NLS environment. Note that the
year must be specified with four digits.

Oracle9i Database: Implement Partitioning 2-8

2-8 Copyright © Oracle Corporation, 2002. All rights reserved.

Range Partitioning

Specify the columns to be partitioned, and the break
values for each partition.
• Each partition must be defined.
• The MAXVALUE value includes NULL values.

Range Partitioning
The Partition Key can be any columns from the table, within the data type restrictions.
The partitions end points are specified with:

VALUES LESS THAN (value-list)

for each partition. The value-list must correspond in type and position to the partition key.
These values are noninclusive. That is, the partition key of rows in a partition does not
include the value listed.
The MAXVALUE value allows the greatest possible value, and fits all data types. Conversely,
the smallest possible value will be stored in the first partition. If you omit the partition with
the MAXVALUE bound, then there is an implied check constraint on the column.
NULL values are stored in the partition with the MAXVALUE end point. NULLs are treated as
“one greater than the highest possible value.” There is no way to specify “MAXVALUE-1”
or otherwise partition NULL values separately. You can specify a NOT NULL constraint on
the partition key column(s).

Oracle9i Database: Implement Partitioning 2-9

2-9 Copyright © Oracle Corporation, 2002. All rights reserved.

Range Partitioning
Example

SQL> CREATE TABLE simple
2 (idx NUMBER, txt VARCHAR2(20))
3 PCTFREE 20 TABLESPACE data04
4 PARTITION BY RANGE (idx)
5 (PARTITION VALUES LESS THAN (0)
6 TABLESPACE data01
7 , PARTITION VALUES LESS THAN (MAXVALUE)
8 PCTFREE 5) ;

Range Partitioning Example
In the example, rows will partition:

• Any nonzero negative value in the first partition
• Zero, any positive and NULL values in the last partition

The partitions are not explicitly named, and will be called SYS_Pnnnn. The first partition
has defined storage in tablespace DATA01, but uses the default PCTFREE value (20) from
the table definition. The second partition will be stored in the DATA04 tablespace and use
the defined PCTFREE 5 as its storage attribute.

Oracle9i Database: Implement Partitioning 2-10

2-10 Copyright © Oracle Corporation, 2002. All rights reserved.

Multicolumn Partitioning

You can specify multiple columns for a composite
partitioning key.
• The order is significant.
• The second column will be examined only after the

first column values are equal to the limit
specification.

Multiple Column Partitioning
There can only be one partitioning key, but the key can consists of multiple columns. This is
analogous to composite key indexing.
When comparing the row values with the partition end points, in order to determine which
partition the row should map to, the following is used:

• If the first column is less than the first partition key value, the row belongs to that
partition. This means the second column may contain NULLs. The partition key value of
the second and subsequent columns is simple ignored.

• If the first column is equal to the first partition value key, the second column is
compared to the second partition value.

- If the second column is less than the first partition key value, the row belongs to that
partition.

- If it is greater or equal to the first partition key, then the third column will be
compared, as above. If there is no third column, then the row belongs to the next
partition.

- If there is no higher partition, the row is rejected.

Oracle9i Database: Implement Partitioning 2-11

2-11 Copyright © Oracle Corporation, 2002. All rights reserved.

Multicolumn Example

If this is the partition definition,

which partition do the rows then go into?

SQL> CREATE TABLE multicol
2 (unit NUMBER(1), subunit CHAR(1))
3 PARTITION BY RANGE (unit, subunit)
4 (PARTITION P_2b VALUES LESS THAN (2,'B')
5 , PARTITION P_2c VALUES LESS THAN (2,'C')
6 , PARTITION P_3b VALUES LESS THAN (3,'B')
7 , PARTITION P_4x VALUES LESS THAN (4,'X'));

Values # Values # Values
01 1,'A' 05 1,'Z' 09 1,NULL
02 2,'A' 06 2,'B' 10 2,'C'
03 2,'D' 07 2,NULL 11 3,'Z'
04 4,'A' 08 4,'Z' 12 4,NULL

Multicolumn Example
The partitions are named. To determine which row goes into which partition, the block ID in
the rowid is displayed below:

SQL> SELECT DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) BLOCK,
2 unit, NVL(subunit,'NULL') FROM multicol ;

BLOCK UNIT SUBUNIT
----- ---- --------

146 1 A
146 2 A
146 1 Z
146 1 NULL
162 2 B
178 2 D
178 2 NULL
178 2 C
194 4 A
194 3 Z

The rows 08 and 12 failed to insert with ORA-14400: inserted partition key does not map to
any partition.

Oracle9i Database: Implement Partitioning 2-12

Multicolumn Example (continued)
Care must be taken when defining a date using other data types and partition on these
multiple columns.

CREATE TABLE … (year NUMBER(4), month NUMBER(2),
day NUMBER(2) …)

PARTITION BY RANGE (year, month, day)
(PARTITION VALUES LESS THAN (2001, 01, 32)
, PARTITION VALUES LESS THAN (2001, 02, 29)
, PARTITION VALUES LESS THAN (2001, 03, 32)

:

The expectation is that only valid dates can be entered, but because a row with values
(2000,13,88) will be accepted and stored in the lowest partition, an extra CHECK constraint
must be defined on the table to disallow that.
The day end value must be one greater than the month end day, because the values are
noninclusive.
Defining the partition key as (day, month, year) will cause many problems, and
be impossible with the partition key values shown.
A better functionality is to partition direct on a column of type DATE.
The partition key definition should use TO_DATE, with a fully specified date and format
mask, to avoid any ambiguities. For example:

… VALUES LESS THAN (TO_DATE('20010101','YYYYMMDD') …

Using a string as the leading column can give unexpected results. Consider if the
DBA_SOURCE table were to be partitioned. There are a few DBMS procedures with
thousands of source lines, and most have only a few hundred lines. A simple-minded
approach might be:

PARTITION BY (NAME, LINE)
(PARTITION DBA_SOURCE_P1

VALUES LESS THAN ('DBMS',1000)
, PARTITION DBA_SOURCE_P2

VALUES LESS THAN ('DBMS', MAXVALUE)
, PARTITION DBA_SOURCE_P3

VALUES LESS THAN (MAXVALUE, MAXVALUE))

The erroneous expectation here is that the procedures with lines above 1000 have those rows
stored in DBA_SOURCE_P2. The partition DBA_SOURCE_P2 will actually not have a
single row in it; all DBMS* source will be stored in DBA_SOURCE_P3. The problem in the
string comparison is that 'DBMRxxxx' will compare lower than 'DBMS' for the first
partition, and 'DBMS_xxxx' will compare larger than 'DBMS' for partition
DBA_SOURCE_P1 and DBA_SOURCE_P2. Thus, only a procedure that is called 'DBMS'
exactly will have its lines greater or equal to 1000 placed in partition DBA_SOURCE_P2.
A similar problem can arise if you have two NUMBER columns and use fractional numbers.

Oracle9i Database: Implement Partitioning 2-13

2-13 Copyright © Oracle Corporation, 2002. All rights reserved.

List Partitioning

Specify the column to partition on, and list the values
for each partition.
• Each partition and each value must be defined.
• NULL can be specified.

SQL> CREATE TABLE simple
2 (idx NUMBER, txt VARCHAR2(20))
3 PARTITION BY LIST (txt)
4 (PARTITION s_top VALUES ('HIGH', 'MED')
5 TABLESPACE data01
6 , PARTITION s_bot VALUES ('LOW', NULL)
7 TABLESPACE data02
8) ;

LIST Partitioning
The Partition Key can be any single column from the table, within the data type restrictions.
The partitions key values are specified with

VALUES (value-list)

for each partition. All values of the partition key value for the partition must be listed as
literals. There is no “other” values clause. The string comprising the list of values for each
partition can be up to 4K bytes. The total number of partition key values for all
partitions cannot exceed 64K-1.
NULL can be specified as a value. Any literal value, or NULL, must only appear once.
You cannot list partition IOTs.

Example
In the example, rows will partition:

• Rows with the value of txt either 'HIGH', 'MED' go into the s_top partition
• Rows with the value of txt either 'LOW' or NULL go into the s_bot partition
• Any other rows are rejected

The partitions are explicitly named and have a specified tablespace.

Oracle9i Database: Implement Partitioning 2-14

2-14 Copyright © Oracle Corporation, 2002. All rights reserved.

Hash Partitioning,
Named Partitions

Specify the columns to be partitioned, and the number
of partitions:
• Partition may be defined, or just quantified
• NULL is placed in the first partition
• Number should be power of two
SQL> CREATE TABLE simple
2 (idx NUMBER, txt VARCHAR2(20) PRIMARY KEY)
3 ORGANIZATION INDEX
4 PARTITION BY HASH (txt)
5 (PARTITION s_h1 tablespace data01
6 , PARTITION s_h2 tablespace data03
7) ;

Hash Partitioning
The Partition Key can consist of any columns from the table, within the data type
restrictions.
The partitions end points are not specified. Rows are placed in a partition according to hash
value derived from the column values.
The hash partitions can be specified with name and tablespace, but with no other attributes.
Other storage attributes must thus be defined in the tablespace.
Alternatively, the hash partitions are not specified, but only the quantity (see next page)
NULL values are stored in the first partition.

Example
In the example, rows will be “evenly distributed” in all partitions.
The partitions are explicitly named.

Oracle9i Database: Implement Partitioning 2-15

2-15 Copyright © Oracle Corporation, 2002. All rights reserved.

Hash Partitioning:
Quantity of Partitions

SQL> CREATE TABLE simple
2 (idx NUMBER, txt VARCHAR2(20))
3 PARTITION BY HASH (idx)
4 PARTITIONS 4
5 STORE IN (data01, data02) ;

Hash Partitioning - Quantity of Partitions
In this example the hash partitions are not specified, but only the quantity.
The optional STORE IN clause defines which tablespaces to use. If there are not enough
tablespaces, the partitions are allocated alternatively to the tablespaces listed.

Number of partitions - Power of two
It is recommended that the number of partitions is a power of two value, that is, 2, 4, 8, 16,
or 32, and so on. This is recommended, regardless of which two syntax variations are used to
define the hash partitions. If the number is not a power of two, the first few partitions will
contain disproportionately more rows. This is due to the hash and partitioning algorithm
used.

Oracle9i Database: Implement Partitioning 2-16

2-16 Copyright © Oracle Corporation, 2002. All rights reserved.

Composite Partitioning

Composite Partitioning is a partitioning of the
partitions.
Hash subpartitioning of a Range Partitioned table:

SQL> CREATE TABLE simple
2 (idx NUMBER, txt VARCHAR2(20))
3 PARTITION BY RANGE (idx)
4 SUBPARTITION BY HASH (txt)
5 SUBPARTITIONS 4 STORE IN (data01, data02)
6 (PARTITION ns_lo VALUES LESS THAN (0)
7 , PARTITION ns_hi VALUES LESS THAN (1E99)
8 , PARTITION ns_mx
9 VALUES LESS THAN (MAXVALUE)

10 SUBPARTITIONS 2 STORE IN (data03)) ;

Composite Partitioning
Composite partitioning is a hash partitioning of a range partitioned table partition.
The range partition is specified as a normal range partition type. The hash partition under the
range partition is specified with the SUBPARTITION clause, but otherwise uses the same
syntax as for simple hash partitioning.
The subpartition partition key can be the same or different from the range partition key.
There is no storage clause associated with each range partition, because they are stored as
hash subpartitions. You can specify the hash subpartitions for each range partition, thus
indirectly giving each range partition different physical attributes.

Example
This example uses the numbered hash partitions variation to specify the subpartitions.
Only rows with idx having NULL will be in the ns_mx subpartitions. (An additional check
constraint prohibiting idx greater than 1E99 can be added.)
All range partitions are stored in four hash subpartitions in the tablespaces data01 and
data02, except the ns_mx partition, which only uses two hash subpartitions stored in the
tablespace data03.

Oracle9i Database: Implement Partitioning 2-17

2-17 Copyright © Oracle Corporation, 2002. All rights reserved.

Composite Partitioning:
Another Example

SQL> CREATE TABLE simple
2 (idx NUMBER, txt VARCHAR2(20))
3 PARTITION BY RANGE (idx)
4 SUBPARTITION BY HASH (txt)
5 (PARTITION ns_lo VALUES LESS THAN (0)
6 (SUBPARTITION ns_lo1 TABLESPACE data01
7 , SUBPARTITION ns_lo2 TABLESPACE data02
8 , SUBPARTITION ns_lo3 TABLESPACE data01
9 , SUBPARTITION ns_lo4 TABLESPACE data02)

10 , PARTITION ns_hi VALUES LESS THAN (1E99)
11 (SUBPARTITION ns_hi1 TABLESPACE data01
12 , SUBPARTITION ns_hi2 TABLESPACE data02)
13 , PARTITION ns_mx
14 VALUES LESS THAN (MAXVALUE)
15 SUBPARTITIONS 2 STORE IN (data03)
16) ;

Composite Partitioning - another example
This example uses named hash subpartitions, except for the last partitions, which quantify
them by number.
Subpartitions are name SYS_SUBPnnnn with nnnn being unique.
Note the parenthesis in the syntax around the SUBPARTITION keyword in the individual
partition definition.

Oracle9i Database: Implement Partitioning 2-18

2-18 Copyright © Oracle Corporation, 2002. All rights reserved.

Index Organized Table (IOT) Partitioning

• IOTs can be range or hash partitioned.
• The partition key has to be a subset of the IOT

primary key

SQL> CREATE TABLE simple
2 (idx NUMBER, txt VARCHAR2(20), id2 NUMBER
3 , CONSTRAINT s_pk PRIMARY KEY (idx, txt))
4 ORGANIZATION INDEX
5 PARTITION BY HASH (txt)
6 (PARTITION s_h1 tablespace data01
7 , PARTITION s_h2 tablespace data03
8) ;

IOT Partitioning
The partitioning clauses are unchanged for partitioning an Index Organized Table (IOT).
The INCLUDING clause of the IOT can only be defined on the table, that is, it must be the
same for all partitions.

Segment and Partition Names
An IOT table consists of one or two segments, which are named SYS_IOT_TOP_nnnn
and SYS_IOT_OVER_nnnn. A partitioned IOT has the same segment names, and the
partition segments can be named by the system or in the partition clause.

Oracle9i Database: Implement Partitioning 2-19

2-19 Copyright © Oracle Corporation, 2002. All rights reserved.

OVERFLOW Segment Partitioning

• The OVERFLOW segment of an IOT is equipartitioned
with the table partitions.

• Storage attributes of the OVERFLOW segment are
specified for each partition.

…
PARTITION s_10 VALUES LESS THAN (10)
TABLESPACE INDX01
OVERFLOW TABLESPACE DATA04
…

Partitioning of the OVERFLOW segment of IOT
The index organized table (IOT) can consist of two segments, the table and the OVERFLOW
segment. When the IOT is partitioned, the overflow segment is likewise partitioned, creating
one overflow partition for every table partition.
An OVERFLOW clause is placed as part of the partition physical attributes. If the
OVERFLOW is not specified in the partition clause, the default storage from the table
overflow clause is used. The overflow partition is still created.
The OVERFLOW clause must be specified in the table definition, if it is specified in any
partition clause. Omitting all OVERFLOW clauses creates a partitioned IOT without overflow.
You cannot separately name the overflow partitions, because they receive the same partition
name as the table partitions.

Oracle9i Database: Implement Partitioning 2-20

2-20 Copyright © Oracle Corporation, 2002. All rights reserved.

OVERFLOW Segment Example

SQL> CREATE TABLE simple
2 (idx NUMBER PRIMARY KEY, txt VARCHAR2(10))
3 ORGANIZATION INDEX
4 OVERFLOW TABLESPACE data01
5 PARTITION BY RANGE (idx)
6 (PARTITION s_10 VALUES LESS THAN (10)
7 TABLESPACE INDX01
8 OVERFLOW TABLESPACE DATA04
9 , PARTITION s_20 VALUES LESS THAN (20)

10 TABLESPACE INDX02
11) ;

Example
If the row has an overflow, it is stored in the overflow partition that is associated with the
table partition where the beginning of the row is stored.
The OVERFLOW on line 4 is the table level definition of the overflow segment. On lines 9
and 10 the OVERFLOW clause is missing, therefore the overflow segment partition uses the
overflow definitions from line 4.
If you omitted lines 5 onwards, the IOT would be created as a nonpartitioned IOT with an
overflow segment.

Oracle9i Database: Implement Partitioning 2-21

2-21 Copyright © Oracle Corporation, 2002. All rights reserved.

LOB Partitioning

• LOB segments are equipartitioned with the table
partition.

• Storage attributes are specified for each LOB in
each partition.

…
PARTITION s_10 VALUES LESS THAN (10)

TABLESPACE data01
LOB (txt) STORE AS st_10

(DISABLE STORAGE IN ROW
TABLESPACE data03)

…

Partitioning of LOB segments
A table with LOB columns will probably have an additional segment for every LOB (CLOB,
NCLOB and BLOB, but not BFILE). When the table is partitioned, the LOB segment is
likewise partitioned, creating one LOB partition for every table partition, for each LOB
column.
A LOB storage clause can be specified as part of the partition physical attributes. If the LOB
storage clause is not specified in the partition clause, the default storage from a possible
table level LOB storage clause is used. The LOB partition is still created.
You can name both the LOB segment and partitions. All the LOB attributes can be specified
separately for each partition.
You cannot specify a LOB column as part of a partition key.

Oracle9i Database: Implement Partitioning 2-22

2-22 Copyright © Oracle Corporation, 2002. All rights reserved.

LOB Segment Example

SQL> CREATE TABLE simple
2 (idx NUMBER, txt CLOB)
3 LOB (txt) STORE AS s_lob
4 (TABLESPACE data04)
5 PARTITION BY RANGE (idx)
6 (PARTITION s_10 VALUES LESS THAN (10)
7 TABLESPACE data01
8 LOB (txt) STORE AS st_10
9 (DISABLE STORAGE IN ROW

10 TABLESPACE data03)
11 , PARTITION s_20 VALUES LESS THAN (20)
12 TABLESPACE data02
13) ;

LOB segment Example
Rows are stored in the appropriate partition as explained for previous range partitions. The
LOB of the row is stored in the LOB partition that is associated with the table partition
where the row is stored.
The LOB definition on lines 3 and 4 is the table level definition of the LOB segment.
Around line 12, the LOB clause is missing, therefore the LOB segment partition uses the
LOB definition from lines 3 and 4. The LOB partition is named SYS_LOB_Pnnnn.
If you omit lines 5 onwards, the table would be a normal table with one LOB segment.
The table level specification of the LOB segment in lines 3 and 4 is optional.

Oracle9i Database: Implement Partitioning 2-23

2-23 Copyright © Oracle Corporation, 2002. All rights reserved.

Partitioned Object Tables and
Partitioned Tables with Object Types

• Object tables can be partitioned.
• Tables containing object types can be partitioned.
• Nested Tables cannot be partitioned.

Partitioned Object Tables and Partitioned Tables with Object Types
Range, hash and composite partitioning are supported.
Attributes that are of type object, REF, or are part of a nested table or VARRAY cannot be
part of the partition key.
Global indexes are allowed for range partitioning, and on the range partitions of a composite
partitioned table.
If the object identifier is user defined, then some or all of the columns used to define the
object identifier can also be used in the partition key, if required. However, the partition key
cannot explicitly use an object identifier.
Attributes that are of type object, REF, or are part of a nested table or VARRAY cannot be
part of the partition key.
Partitioning tables with VARRAYs are similar to partitioning tables with object type
columns.

Oracle9i Database: Implement Partitioning 2-24

2-24 Copyright © Oracle Corporation, 2002. All rights reserved.

Updateable Partition Keys

Because performing UPDATE on a row alters the value
of the columns that define which partition the row
belongs to, the following can happen:
• The update results in the row still being mapped to

the same partition.
• The update makes the row map to another partition,

and therefore is disallowed.
• The update makes the row map to another partition,

and therefore the row is moved to the new partition.

Updates on the Partition Value
The first case is allowed. The value of the column of the partition key can be updated.
The choice between the second and third case is controlled by the

ROW MOVEMENT DISABLED | ENABLED

attribute of the table. This is DISABLED by default.
When a row moves, all indexes referring to it are maintained. This can generate considerable
redo activity. Although this can be thought of as a DELETE from one partition, followed by
an INSERT in the other partition, only the UPDATE trigger will fire once for the statement
or row as defined. The moved row has a new ROWID.
An UPDATE that attempts to alter the partition column values to outside the partition bound
values, if row movement is disabled, fails (ORA-14406).
Ordinary row migration can still occur, and will be within the partition.

Oracle9i Database: Implement Partitioning 2-25

2-25 Copyright © Oracle Corporation, 2002. All rights reserved.

Row Movement

A,3
B,4

K,5

E,3
B,4

K,5

E,3 K,5
Q,4

UPDATE …
change B to Q

LESS THAN('G') LESS THAN('Z')

UPDATE …
change A to E

Row Movement
This illustrates a table with two partitions and three rows.
There are two updates. The first update does not move the row, but the other update requires
the row to move.

Oracle9i Database: Implement Partitioning 2-26

2-26 Copyright © Oracle Corporation, 2002. All rights reserved.

Row Movement Example
SQL> CREATE TABLE simple (idx NUMBER ...)

2 ENABLE ROW MOVEMENT
3 PARTITION BY RANGE (idx)
4 (PARTITION s_neg VALUES LESS THAN (0)
… ;

SQL> INSERT INTO simple VALUES (1, 'Moving') ;
SQL> SELECT idx,BLOCK(ROWID),rowid FROM simple ;

1 181 AAAB/GAADAAAAC1AAA
SQL> UPDATE simple SET idx=0 ;
SQL> SELECT idx,BLOCK(ROWID),rowid FROM simple ;

0 181 AAAB/GAADAAAAC1AAA
SQL> UPDATE simple SET idx=-1 ;
SQL> SELECT idx,BLOCK(ROWID),rowid FROM simple ;

-1 117 AAAB/FAADAAAAB1AAA
SQL> ALTER TABLE simple DISABLE ROW MOVEMENT ;
SQL> UPDATE simple SET idx=0
ORA-14402: updating partition key column would
cause a partition change

Row Movement Example
The BLOCK function above is the DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid)
function; it shows the block number of the row.
When the column value of the partition key changes from 0 to –1, the row moves position
and its rowid changes as well.
The ALTER TABLE statement disables the ROW MOVEMENT. Updating the row again in
order to get a row movement, fails this time with

ORA-14402: updating partition key column would cause a
partition change.

Oracle9i Database: Implement Partitioning 2-27

2-27 Copyright © Oracle Corporation, 2002. All rights reserved.

Equipartitioning

• If two tables have the same partition keys and
partition key values, then they are equipartitioned.

• This is useful for tables with a common key, like
master-detail relationships.

• Partition-wise join operation requires
equipartitioning.

• Indexes can be equipartitioned with the table.

Equipartitioning
Equipartitioned tables (and indexes) can have different physical attributes for each partition,
as long as they have the same partition key definition and the same partition key values in
each partition.
This simplifies data management because all rows in both tables are easily manipulated
together as partitions correspond.
As seen previously, the OVERFLOW part of an IOT is equipartitioned with the table.
Master-Detail equipartitioning is useful for export and import by the partition; the
corresponding rows are kept together.
Equipartitioning a table and its materialized view avoids bulk loading of data that
invalidates the whole MV. Query rewrite can occur on other partitions.
Indexes will be covered in the next lesson. Local indexes are always equipartitioned.

Oracle9i Database: Implement Partitioning 2-28

2-28 Copyright © Oracle Corporation, 2002. All rights reserved.

Partition Extended Table Names

Specify the partition in a table to limit an operation:

SQL> SELECT idx
2 FROM simple PARTITION (s_neg) ;

SQL> DELETE FROM simple SUBPARTITION (s_h2) ;

SQL> CREATE TABLE sim2
2 AS SELECT * FROM simple PARTITION (p3) ;

Specifying a Partition
The optional PARTITION or SUBPARTITION clause can be used to specify the name of
the partition to use. This will limit the operation to the named partition, acting as a WHERE
clause.
Note that most DDL operations have separate syntax for manipulating a partition, you do not
use the Partition Extended Name.

Oracle9i Database: Implement Partitioning 2-29

2-29 Copyright © Oracle Corporation, 2002. All rights reserved.

General Restrictions

• Partitioned tables cannot contain LONG data.
• All partitions must reside in tablespaces with the

same block size.
• You cannot partition on LOBs.
• Comparison of partition keys is done by binary

values.

General Restrictions
Any partitions belonging to the table must be of the same blocksize. Other segments, such as
overflow or LOB segments do not need the same block size. Indexes are separate objects
and are not constrained to the table block size.
While you cannot use LOB as the partition key, LOBs can be part of a partitioned table.
Comparison is done by binary values. This might have consequences in the expected row
mapping for strings, because it will not be lexical sorting.

Release 9i Release 1 Restrictions
TIMESTAMP WITH TIME ZONE cannot be a partition key.

Oracle9i Database: Implement Partitioning 2-30

2-30 Copyright © Oracle Corporation, 2002. All rights reserved.

Table, Partition, and Segment Relations

• A partitioned table is an object consisting of
subobjects, the partitions.

• The table is “virtual,” and consists of physical
partitions.

TS_1 TS_2 T

PT

Segment or Partition
The Data Dictionary views of the segment of partitioned tables and other objects is not a
simple one-to-one relation. For ordinary tables, a table is both an object and a segment. For a
partitioned table, the table is just an object, but also consists of partitions, each of which is
an object and a segment. The simple relation of a table residing in a tablespace (thus the
name), is extended to a table’s partitions residing in different tablespaces.
Shown here is a partitioned table (PT). The table object and partition objects, still called the
table segments, are residing in tablespaces TS_1 and TS_2. The table consists of two
partitions, that is, two segments called table partition segments, in the tablespace TS_1 and
TS_2, respectively.
A normal table (T) is shown for comparison with one table segment in tablespace TS_2.
In summary:

• Tablespace TS_1 and TS_2
• Tables T and PT
• Table segments T and PT
• Table partition segment (name not shown on diagram) SYS_P0022, SYS_P0023

Each partition segment can consist of many extents, all in the same tablespace.

Oracle9i Database: Implement Partitioning 2-31

2-31 Copyright © Oracle Corporation, 2002. All rights reserved.

Data Dictionary Views
Tables

Name

DBA_TABLES

DBA_PART_TABLES

DBA_TAB_*PARTITIONS

DBA_*PART_KEY_COLUMNS

Purpose

Table structure, Partition Y/N

Partition type, default values

Partitions detail

Partition keys

N

T

T

P

P

* SUB variation T = per Table
P = per Partition

Data Dictionary Views Tables
In the following discussion and slides, the views are consistently given by their DBA_ prefix
version. The USER_ and ALL_ versions of the views also exist.
Basic table definition DBA_TABLES shows if the table is partitioned (YES, NO) and if row
movement is enabled. The TABLESPACE_NAME column and other storage attributes are
NULL if it is partitioned, because the table has no storage, only its partitions. There is one
row for each table.

SQL> SELECT TABLE_NAME, TABLESPACE_NAME,
2 PARTITIONED, ROW_MOVEMENT
3 FROM USER_TABLES ;

TABLE_NAME TABLESPACE_NAME PARTITIONED ROW_MOVE
---------- --------------- ----------- --------
HR_EMP YES ENABLED
MULTICOL YES ENABLED
ORDINARY USERS NO
SIMPLE YES DISABLED

The partition definition is in DBA_PART_TABLES which describes the partition type (range,
list, and so on), the partition key, and default storage attributes of partitions (the
corresponding fields in DBA_TABLES are NULL). There is one row for each table.

Oracle9i Database: Implement Partitioning 2-32

Data Dictionary Views Tables (continued)
SQL> SELECT TABLE_NAME, PARTITIONING_TYPE,

2 SUBPARTITIONING_TYPE, PARTITION_COUNT,
3 PARTITIONING_KEY_COUNT,DEF_TABLESPACE_NAME
4 FROM USER_PART_TABLES ;

TABLE_NAME TYPE SUBTYPE PAR.CNT PAR.KEY_CNT DEF_TAB.SP
---------- ------ ------- ------- ----------- ----------
COMPOS RANGE HASH 3 1 USERS
MULTICOL RANGE NONE 4 2 USERS
SIMPLE LIST NONE 2 1 USERS

The individual partitions are described in DBA_TAB_PARTITIONS, which describe the
end point (range) or values of the partition, and the storage attributes. There is one row for
each partition. The subpartitions are described in DBA_TAB_SUBPARTITIONS.

SQL> SELECT TABLE_NAME, PARTITION_NAME,
2 COMPOSITE, SUBPARTITION_COUNT,
3 PARTITION_POSITION, HIGH_VALUE, TABLESPACE_NAME
4 FROM USER_TAB_PARTITIONS ;

TABLE_NAME P.NAME COM SUB.CNT PART.POS. HIGH_VALUE TABLESP
---------- ------ --- ------- --------- ---------- -------
SIMPLE S_BOT N0 0 2 'LOW', NUL DATA02
SIMPLE S_TOP N0 0 1 'HIGH','ME DATA01
MULTICOL P_2B N0 0 1 2, 'B' USERS
MULTICOL P_2C N0 0 2 2, 'C' USERS
MULTICOL P_3B N0 0 3 3, 'B' USERS
MULTICOL P_4X N0 0 4 4, 'X' USERS
COMPOS NS_HI YES 2 2 1E99 USERS
COMPOS NS_LO YES 4 1 0 USERS
COMPOS NS_MX YES 2 3 MAXVALUE USERS

Note the COMPOSITE column value is 'N0 ' (N-zero-space) for “No”.

SQL> SELECT TABLE_NAME, PARTITION_NAME,
2 SUBPARTITION_NAME, SUBPARTITION_POSITION,
3 TABLESPACE_NAME FROM USER_TAB_SUBPARTITIONS ;

TABLE_NAME PART.NAME SUBP.NAME PART.POS. TABLESPACE
---------- ---------- ---------- --------- ----------
SIMPLE NS_HI NS_HI1 1 DATA01
SIMPLE NS_HI NS_HI2 2 DATA02
SIMPLE NS_LO NS_LO1 1 DATA01

Oracle9i Database: Implement Partitioning 2-33

Data Dictionary Views Tables (continued)
The partition keys are described in DBA_PART_KEY_COLUMNS and
DBA_SUBPART_KEY_COLUMNS for partitions and subpartitions, respectively. There is one
row for every column specified in any partition.

SQL> SELECT NAME "TABLE_NAME", 'PART' PART, COLUMN_NAME,
2 COLUMN_POSITION
3 FROM USER_PART_KEY_COLUMNS
4 WHERE TRIM(OBJECT_TYPE)='TABLE'
5 UNION ALL
6 SELECT NAME "TABLE_NAME", 'SUBP' PART, COLUMN_NAME,
7 COLUMN_POSITION
8 FROM USER_SUBPART_KEY_COLUMNS
9 WHERE TRIM(OBJECT_TYPE)='TABLE' ;

TABLE_NAME PART COLUMN_NAME COL.POS.
---------- ---- ------------ ----------
COMPOS PART IDX 1
MULTICOL PART SUBUNIT 2
MULTICOL PART UNIT 1
SIMPLE PART TXT 1
COMPOS SUBP CHR 2
COMPOS SUBP TXT 1

These two data dictionary tables contain partition keys for both tables and indexes, thus the
WHERE clause. The values returned from column OBJECT_TYPE are space padded, thus
the TRIM function. The two tables have been denormalized for a combined query adding the
PART column to show from which table the row came.
All listings here have been edited to fit.

Oracle9i Database: Implement Partitioning 2-34

2-34 Copyright © Oracle Corporation, 2002. All rights reserved.

Data Dictionary Views
Segments

Name

DBA_SEGMENTS

DBA_EXTENTS

DBA_OBJECTS

Columns to show

PARTITION_NAME, SEGMENT_TYPE

PARTITION_NAME, SEGMENT_TYPE

SUBOBJECT_NAME, OBJECT_TYPE

Data Dictionary Views Segments
The DBA_SEGMENT table has the column PARTITON_NAME to identify the partitions
belonging to a table-segment. All partitions segments have the segment name of the table in
SEGMENT_NAME. PARTITION_NAME is NULL for nonpartitioned tables, otherwise it
contains the partition name. The SEGMENT_TYPE column shows if the segment is a
partition segment, in addition to the different segment types (data, index, and so on).
The DBA_EXTENTS table also has the PARTITION_NAME column.
The DBA_OBJECTS table refers to the partitions of a table as subobjects. Each of these has
its own object ID. Thus, a two-partitioned table has three entries: one for the table, and two
partitions. The SUBOBJECT_NAME, OBJECT_TYPE identify this.

Oracle9i Database: Implement Partitioning 2-35

Data Dictionary Views Segments (continued)

Example
SQL> SELECT SEGMENT_NAME,PARTITION_NAME,SEGMENT_TYPE,

2 TABLESPACE_NAME FROM USER_SEGMENTS ;

SEGMENT_NAME PARTITION_NAME SEGMENT_TYPE TABLESPACE
-------------- -------------- ------------------ ---------
ORDINARY TABLE USERS
SIMPLE S_BOT TABLE PARTITION DATA02
SIMPLE S_TOP TABLE PARTITION DATA01
MULTICOL P_2B TABLE PARTITION USERS
MULTICOL P_2C TABLE PARTITION USERS
MULTICOL P_3B TABLE PARTITION USERS
MULTICOL P_4X TABLE PARTITION USERS
COMPOS NS_LO1 TABLE SUBPARTITION DATA01
COMPOS NS_LO2 TABLE SUBPARTITION DATA02
COMPOS NS_LO3 TABLE SUBPARTITION DATA01
COMPOS NS_LO4 TABLE SUBPARTITION DATA02
COMPOS NS_HI1 TABLE SUBPARTITION DATA01
COMPOS NS_HI2 TABLE SUBPARTITION DATA02
COMPOS SYS_SUBP456 TABLE SUBPARTITION DATA03
COMPOS SYS_SUBP457 TABLE SUBPARTITION DATA03

SQL> SELECT OBJECT_NAME, SUBOBJECT_NAME, OBJECT_ID,
2 DATA_OBJECT_ID, OBJECT_TYPE, STATUS
3 FROM USER_OBJECTS ;

OBJ._NAME SUB_NAME O_ID DO_ID OBJECT_TYPE STATUS
--------- --------- ---- ----- ------------------ -------
COMPOS NS_HI 6739 TABLE PARTITION VALID
COMPOS NS_HI1 6745 6745 TABLE SUBPARTITION VALID
COMPOS NS_HI2 6746 6746 TABLE SUBPARTITION VALID
COMPOS NS_LO 6738 TABLE PARTITION VALID
COMPOS NS_LO1 6741 6741 TABLE SUBPARTITION VALID
COMPOS NS_LO2 6742 6742 TABLE SUBPARTITION VALID
…
COMPOS 6737 TABLE VALID
MULTICOL P_2B 6721 6721 TABLE PARTITION VALID
…
MULTICOL 6720 TABLE VALID
ORDINARY 6544 6544 TABLE VALID
SIMPLE S_BOT 6751 6751 TABLE PARTITION VALID
SIMPLE S_TOP 6750 6750 TABLE PARTITION VALID
SIMPLE 6749 TABLE VALID

Oracle9i Database: Implement Partitioning 2-36

2-36 Copyright © Oracle Corporation, 2002. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Create the four different partition types
• Specify storage attributes for partitions
• Apply partitioning to tables, IOTs, and tables with

LOBs
• Examine the data dictionary to verify how the

partitions are defined

Oracle9i Database: Implement Partitioning 2-37

2-37 Copyright © Oracle Corporation, 2002. All rights reserved.

Practice Overview:
Creating Partitioned Tables

This practice covers the following topics:
• Creating a partitioned table of each type
• Using the data dictionary to verify the partition

structure
• Inserting a few records into tables and verifying with

ROWID that the records are placed in the expected
partitions

• Verifying that partition pruning occurs

Oracle9i Database: Implement Partitioning 2-38

Copyright © Oracle Corporation, 2002. All rights reserved.

Implementing Partitioned Indexes

Oracle9i Database: Implement Partitioning 3-2

3-2 Copyright © Oracle Corporation, 2002. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the table and index partition relationships
• List all the options of partitioned indexes
• Create some partitioned indexes
• Use the data dictionary to verify the partitioned

index structure

Oracle9i Database: Implement Partitioning 3-3

3-3 Copyright © Oracle Corporation, 2002. All rights reserved.

Partitioned Indexes

• Indexes can be partitioned like tables.
• Partitioned or nonpartitioned indexes can be used

with partitioned or nonpartitioned tables.

Normal Partitioned

Table Index Table Index

Partitioned Indexes
The same management benefits and performance improvement that can be achieved by
partitioning tables is achieved by partitioning indexes.
When an index is partitioned, each partition is a complete separate index. There is no master
index to decide which index to use, because that information is inherent in the partition
information.
The syntax used to specify the partitioning of an index is very similar to that used to
partition a table.
Index partitions can be specified to follow the table, thus greatly simplifying the partition
definition.
There are some restrictions on index type (such as bitmap or unique) and index partition
type (such as global or local nonprefixed) combinations.

Oracle9i Database: Implement Partitioning 3-4

3-4 Copyright © Oracle Corporation, 2002. All rights reserved.

Partitioned Index Attributes:
Global or Local

• The partitions of a Global Partitioned Index are
defined independently from the table that it indexes.
A Local Partitioned Index corresponds in
partitioning to the table.

Global Local

Global or Local
Global partitioned indexes can be defined on a nonpartitioned table.
Local indexes can only be defined on partitioned tables.
A local index has the same partitioning key as the table partitioning key.
Local indexes are automatically maintained; that is, changes made on the partitions on the
table are automatically repeated on the local indexes. More details are provided in the
Maintenance of Partitions lesson.

Local Subpartitioned
If the table is composite partitioned, the local index has corresponding subpartitions. There
are no local partitions that correspond to the range partitions of the composite partitioned
table.

Oracle9i Database: Implement Partitioning 3-5

3-5 Copyright © Oracle Corporation, 2002. All rights reserved.

In a prefixed index, all leftmost columns of the index
key are the same as all the columns in the partition key
of the index.

Partitioned Index Attributes:
Prefixed or Nonprefixed

A,B

Prefixed

Partitioned on A Indexed on A

A,B

Non Prefixed

Partitioned on A Indexed on B

Prefixed or Nonprefixed
The prefixed or nonprefixed attribute is not directly specifiable, but is a consequence of the
index key columns and partition key column specification matching.
In a prefixed index, both leading index key and index partition key are the same.
In a nonprefixed index, the leading index key is not the same as the index partition keys.

Oracle9i Database: Implement Partitioning 3-6

3-6 Copyright © Oracle Corporation, 2002. All rights reserved.

Index Partitioning Types

• Partitioned indexes can be:
– Global or local
– Prefixed or nonprefixed

• Allowed partitioning types are:
– Global, not equipartitioned, and prefixed
– Local, equipartitioned, and prefixed
– Local, equipartitioned, and nonprefixed

• A normal nonpartitioned index is also a “partition
type.”

• All index types can be partitioned.

Index Partitioning Types
Although the various partition attributes can be combined in more ways, only these three
index partition types are supported.

Index Types
Indexes can be of different types; B*Tree, Bitmap, Bitmap Join, and Functional. The index
types are independent of the index partition type. All index types can be partitioned, but
some restrictions apply. For example, a bitmap index cannot be global partitioned.

Oracle9i Database: Implement Partitioning 3-7

3-7 Copyright © Oracle Corporation, 2002. All rights reserved.

Global Indexes

Global indexes:
• Must be prefixed
• Only allow RANGE partitioning
• Must include MAXVALUE on all columns

Table Index Table Index

Global Prefixed Indexes
Global indexes can be made on plain tables and partitioned tables, as shown above.
There is no required relation between the index partitioning and the table partitioning.
Only B*Tree indexes can be global partitioned.
Global indexes and non-partitioned indexes on partitioned tables require more space in the
index for the rowid reference, because it must address any tablespace.
Global indexes can be unique or nonunique.

Global Nonprefixed
It is not possible to create a nonprefixed global index, because there are no management or
performance benefits when compared to a nonpartitioned index.

Oracle9i Database: Implement Partitioning 3-8

3-8 Copyright © Oracle Corporation, 2002. All rights reserved.

Global Index Example

SQL> CREATE INDEX idx ON emp (first_name)
2 GLOBAL PARTITION BY RANGE (first_name)
3 (PARTITION x1 VALUES LESS THAN ('H')
4 TABLESPACE data01
5 , PARTITION x2 VALUES LESS THAN
6 (MAXVALUE)
7) ;

Global Index Example
The EMP table is a copy of HR.EMPLOYEES.
The partitioning syntax of the index is the same as you would use for partitioning a table,
with the GLOBAL keyword.
Consider:

SELECT * FROM EMP WHERE FIRST_NAME='Lex' ;

This will only perform index lookup in partition X2, which points to the appropriate rows in
the table. It does not matter if the table is partitioned or not, the index lookup gives the direct
rowid of the table row, so the table partitioning will not alter the effectiveness of the index
lookup.

Oracle9i Database: Implement Partitioning 3-9

3-9 Copyright © Oracle Corporation, 2002. All rights reserved.

Local Prefixed Index

Local prefixed indexes:
• Only possible on partitioned tables
• Both the partition key of the index partitions and the

leading columns of the index key are the same as
the table partitioning key.

Partitioned on Col1, Col2

Index key on
Col1, Col2, Col3

Table Index

Local Prefixed Indexes
Local prefixed indexes can be specified against all four table partition types.
B*tree and bitmap indexes can be local prefix partitioned.
Local prefixed indexes require less space for the rowid reference, because the rows to which
it refers reside in the corresponding table partition, which implies one tablespace.
Local Prefixed indexes can be unique or nonunique.

Usage Note
Local prefixed indexes are particularly useful with massive parallel operations.

Oracle9i Database: Implement Partitioning 3-10

3-10 Copyright © Oracle Corporation, 2002. All rights reserved.

Local Prefix Index Examples

SQL> CREATE INDEX idx ON hr_emp(first_name)
2 LOCAL ;

SQL> CREATE INDEX idx ON hr_emp(first_name)
2 TABLESPACE indx04
3 LOCAL
4 (PARTITION ex1 TABLESPACE indx01
5 , PARTITION ex2 TABLESPACE indx02
6 , PARTITION ex3
7) ;

Local Prefixed Index Examples
The table is created with:

CREATE TABLE hr_emp TABLESPACE data04
PARTITION BY RANGE (first_name)
(PARTITION e1 VALUES LESS THAN ('H')

TABLESPACE data01
, PARTITION e2 VALUES LESS THAN ('Z')

TABLESPACE data02
, PARTITION e3 VALUES LESS THAN (MAXVALUE)

TABLESPACE data03
) AS SELECT * FROM hr.employees ;

The first example places the index partitions in the same tablespace as the corresponding
table partition.
The second example shows that you can specify the physical attributes of the index
partitions. The number of partitions specified must correspond to the number of partitions in
the table. You cannot specify the key partition values. If the partition name is omitted, the
index partition receives the same name as the corresponding table partition.
If the table is partitioned on multiple columns, then the index must use all the same columns
in the same order before any additional index columns are specified. If this is not done, a
nonprefixed local index will be created, and no error will be indicated.

Oracle9i Database: Implement Partitioning 3-11

3-11 Copyright © Oracle Corporation, 2002. All rights reserved.

Local Nonprefixed Index

Local nonprefixed indexes:
• Are possible only on partitioned tables
• Although the index partition key is the same as the

table partition key, the index key is not the same.

Partitioned on Col1, Col2

Index key on
Col1, Col3

Table Index

Local Nonprefixed Indexes
The local nonprefixed index maintains equipartitioning with the table, but the index column
can refer to all table partitions.
Local nonprefixed indexes can be specified against all four table partition types.
B*tree and bitmap indexes can be local nonprefix-partitioned.
Local nonprefixed indexes can be nonunique. If the partition key is a subset of the index key,
then the local nonprefixed index can be unique.

Usage Note
If a query involves the columns of the partition key, then table partition elimination can be
used to make a limited table partition full scan. If the query involves the same columns as
the index key, then all index partitions must be range scanned, because each partition can
potentially contain rows of any table partition.
However, if the query involves columns of both the partition key and the index key, then
only the index partitions corresponding to the partition key are range scanned for the index
key, thus affecting both table and index partition elimination. Nonprefixed indexes should
therefore be chosen where two otherwise unrelated columns are often queried.

Oracle9i Database: Implement Partitioning 3-12

3-12 Copyright © Oracle Corporation, 2002. All rights reserved.

Local Nonprefix Index Example

SQL> CREATE INDEX idx ON hr_emp(last_name)
2 LOCAL ;

Local Nonprefixed Index Example
The table is the same from the previous example; it is range partitioned on first_name.
The example will place the index partitions in the same tablespace as the corresponding
table partition.
Note that there is no syntactical difference to specifying a prefixed or nonprefixed local
index. Only when the local index uses the same leading columns as the table partition key,
will the index be local-prefixed.
The same options, specifying the partition names and storage attributes for the index
partition, as those used for local prefixed indexes, are available for local nonprefixed
indexes.

Oracle9i Database: Implement Partitioning 3-13

3-13 Copyright © Oracle Corporation, 2002. All rights reserved.

Index Partitioning and Type Matrix

Index types

B*Tree

Bitmap

Bitmap Join

Secondary IOT

Cluster*

Global
(Range)

Yes

No

No

No

No

Local
(all)

Yes

Yes

Yes

Yes

No

Index Partitioning and Type Matrix
Cluster index is a simple B*tree index used to implement clustered tables. Clustered tables
can not be partitioned.

Oracle9i Database: Implement Partitioning 3-14

3-14 Copyright © Oracle Corporation, 2002. All rights reserved.

Specifying Index with Table Creation

The partition structure of an index that is used for
primary key constraint can be specified together with
the partitioned table creation.
SQL> CREATE TABLE nonsimple

(idx number, txt varchar2(10),
CONSTRAINT s_pk PRIMARY KEY (idx))

TABLESPACE data04 PARTITION BY HASH (txt)
(PARTITION s1, PARTITION s2)

ENABLE CONSTRAINT s_pk USING INDEX
GLOBAL PARTITION BY RANGE (idx)
(PARTITION spk1 VALUES LESS THAN (0)

TABLESPACE indx02 ,
PARTITION spk2 VALUES LESS THAN (MAXVALUE)

TABLESPACE indx03) ;

Specifying Index with Table Creation
When the index is created together with the table, the syntax structures allow for the
specification of both the index partitioning and the table partitioning; for example, to
enforce a primary key.
The option of defining the index attributes of a constraint are the same for nonpartitioned
tables or indexes; for the partitioned index, the partitioning clauses just extend the storage
clause that would have been used.
Note that this structure is applicable to a partitioned table with a nonpartitioned index and a
nonpartitioned table with a partitioned index, too.

Example
The table is hash partitioned on the txt column, and has a global prefixed range partitioned
primary key on the idx column.

Oracle9i Database: Implement Partitioning 3-15

3-15 Copyright © Oracle Corporation, 2002. All rights reserved.

Graphic Comparison of
Partitioned Index Types

• Global
nonpartitioned
index

• Global partitioned
prefixed index

• Local prefixed
index

• Local nonprefixed
index

Global nonpartitioned index

Global partitioned Index

Table partitions

Local prefixed index

Local nonprefixed index

Graphic Comparison of Partitioned Index Types
The syntax to create the global nonpartitioned index, that is, an ordinary index, is unchanged
from creating a simple index on a simple table.
If the table is not partitioned, then only the global index types can be created.

Oracle9i Database: Implement Partitioning 3-16

3-16 Copyright © Oracle Corporation, 2002. All rights reserved.

Index Partition Status

A table partition can be altered:
• With DML - The index is maintained.
• With DDL - The index might become UNUSABLE.

– Usually only one partition for local indexes
– The whole index for global or nonpartitioned indexes

Table T1 Local Index I1 Global Index I2

DDL
Change

Broken
Index

Partitions

Index Partition Status
Partitioned table and index maintenance will be covered in the lesson on Maintenance of
Partitions.
A table partition can be modified with ordinary DML (Insert, Update, Delete). The index
will be updated accordingly.
A table partition can be altered with DDL (for example MOVE), or a direct DML, such as a
direct parallel load operation, which leaves part of the index in a questionable state. The
index is not updated and is marked UNUSABLE. This is different from INVALID.

• If the index is local, then only the corresponding index partition is affected.
• If the index is global or non partitioned, the whole index is affected. That is, for global

indexes, all index partitions are marked UNUSABLE.
One of the management advantages of partitioning is that only a section of the data is
affected. The maintenance operation to remedy faults is also limited to the involved
partitions.

Oracle9i Database: Implement Partitioning 3-17

3-17 Copyright © Oracle Corporation, 2002. All rights reserved.

Index Partition UNUSABLE

• The index remains defined.
• If partitioned, other partitions remain fully usable.
• The index will block DML on the corresponding

table.
• Queries can fail or bypass UNUSABLE index

partitions depending on the session
SKIP_UNUSABLE_INDEX setting.
– TRUE, use another execution plan
– FALSE, report ORA-1502

UNUSABLE Index state
The index still occupies space.
Rebuild can be limited to the partitions affected. Nonpartitioned indexes must be dropped
and rebuilt.
Using the UPDATE GLOBAL INDEXES clause on the DDL command will automatically
maintain all indexes.

SKIP_UNUSABLE_INDEX limitations
Only queries can bypass a bad index partition. INSERT, UPDATE, and DELETE, which
require the affected index partition, will always give an error until the fault is remedied.

Use the ALTER SESSION SET SKIP_UNUSABLE_INDEX={TRUE | FALSE} to set
the session mode. Default is FALSE.

Oracle9i Database: Implement Partitioning 3-18

3-18 Copyright © Oracle Corporation, 2002. All rights reserved.

Data Dictionary
Views Indexes

Name

DBA_INDEXES

DBA_PART_INDEXES

DBA_IND_*PARTITIONS

DBA_*PART_KEY_COLUMNS

DBA_IND_COLUMNS

Purpose

Index structure, Partition Y/N

Partition type, default values

Partitions detail

Partition keys

Index keys

N

I

I

P

P

I

* SUB variation I = per index
P = per partition

Data Dictionary Views Indexes
The data dictionary views for partitioned indexes follow the same pattern as for tables.
The basic index attributes in DBA_INDEXES contain the index type (unique in UNIQUE,
bitmap or normal in INDEX_TYPE) and if the index is partitioned (yes/no in
PARTITIONED). There is one row for every index.
The index key description is stored in DBA_IND_COLUMNS as it is for nonpartitioned
indexes.
The partition definition is in DBA_PART_INDEXES that describe the partition type (range,
hash, list, and so on) and default storage attributes of partitions. (The corresponding fields in
DBA_INDEXES are NULL.) There is one row for each index.
The individual partitions are described in DBA_IND_PARTITIONS, which describe the
end point (range) or values of the partition, the storage attributes, and the index partition
STATUS. There is one row for each partition. The subpartitions are described in
DBA_IND_SUBPARTITIONS.
The partition keys are described in DBA_PART_KEY_COLUMNS and
DBA_SUBPART_KEY_COLUMNS,as they are for table partition keys. The OBJECT_TYPE
columns show if the partition key is for a table or an index.

Segments, Dictionary Objects
There is no difference from the data dictionary views used for partitioned tables.

Oracle9i Database: Implement Partitioning 3-19

3-19 Copyright © Oracle Corporation, 2002. All rights reserved.

Guidelines for Partitioning Indexes

Local
prefixedY

N

N

Global
prefixedY

N
Y

Local
Non-

prefixed

OLTPDSS
Global

prefixed
Local

Nonprefixed
Is it used mainly by DSS
or OLTP type queries?

Is performance overhead for searching
multiple index trees acceptable to achieve
higher availability, better manageability,
and less pinging with Parallel DML?

Is this a unique index on a
nonpartitioning column?

Does table’s partitioning follow the
left prefix of the index columns?

Guidelines for Partitioning Indexes
When you are deciding how to partition indexes on a table, consider the mix of applications
that must access the table. There is a trade-off between performance on the one hand, and
availability and manageability on the other.
Some guidelines for you to consider are described in the following section.

Online Transaction Processing (OLTP)
Global indexes and local prefixed indexes provide better performance than local nonprefixed
indexes because they minimize the number of index partition probes.
Local indexes support more availability when there are partition maintenance operations on
the table. Local nonprefixed indexes are very useful for historical databases.

Oracle9i Database: Implement Partitioning 3-20

Guidelines for Partitioning Indexes (continued)

Decision Support Systems (DSS)
Local nonprefixed indexes can improve performance because many index partitions can be
scanned in parallel by range queries on the index key.
If possible, indexes for historical tables should be local. This limits the impact of regularly
scheduled drop partition operations.
Unique indexes on columns other than the partitioning columns must be global because
unique local nonprefixed indexes, whose keys do not contain the partitioning key, are not
supported.

Oracle9i Database: Implement Partitioning 3-21

3-21 Copyright © Oracle Corporation, 2002. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Describe the different index partitioning types
• Create partitioned indexes

Oracle9i Database: Implement Partitioning 3-22

3-22 Copyright © Oracle Corporation, 2002. All rights reserved.

Practice Overview:
Creating Partitioned Indexes

This practice covers the following topics:
• Creating most types of partitioned index
• Using the data dictionary to verify the partition

structure
• Examining failures of some partition attempts
• Specifying partitioned constraints

Copyright © Oracle Corporation, 2002. All rights reserved.

Maintenance of
Partitioned Tables and Indexes

Oracle9i Database: Implement Partitioning 4-2

4-2 Copyright © Oracle Corporation, 2002. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• List all of the alterable partitioned table and index

attributes
• Describe the overhead associated with each

maintenance command

Oracle9i Database: Implement Partitioning 4-3

4-3 Copyright © Oracle Corporation, 2002. All rights reserved.

Maintenance Overview

With the ALTER TABLE or ALTER INDEX statements, you
can modify:
• Logical attributes of table - Column data types
• A single partition:

– Allocate, truncate, rename
– Exchange with a table

• Table or index partitions:
– Add, drop, move, split, coalesce, merge
– Row movement

You cannot simply alter the partition type.

Maintenance Overview
Nearly every attribute of a partitioned table or index can be altered after the table or index
has been created and populated. This is different from altering the table or index as a whole,
as you do with a nonpartitioned table or index.
Changes to a table’s logical properties, such as the number and types of data columns, can
be made to partitioned as well as nonpartitioned tables with the same syntax.
The partition’s logical property, for example, the name, can be altered.
The partitions physical properties such as the storage attribute can be altered. For some
attributes, the partition must be moved for the changes to take effect.
The table or index’s partition key definition can be altered by adding, dropping, merging, or
splitting partitions of the table or index. This may affect the data within some existing
partitions.
Individual partitions can be exchanged, moved, truncated, or dropped, affecting the data
within the partition.
You cannot change the partitioning type with a simple DDL statement; you must use the
DBMS_REDFENITION package to achieve that. The DBMS_REDFENITION can
transparently run online, that is, while users access and modify the table rows.

Oracle9i Database: Implement Partitioning 4-4

4-4 Copyright © Oracle Corporation, 2002. All rights reserved.

Table and Index Interaction
During Partition Maintenance

• Altering a table partition will affect indexes on the
table:
– Local indexes are added, dropped, or set to UNUSABLE.
– Global indexes are marked UNUSABLE.
– Global partitioned indexes are marked UNUSABLE.

• Adding the UPDATE GLOBAL INDEXES clause will
maintain global indexes.

• Altering an index partition does not affect other
indexes or tables.

Table or Index Interaction During Partition Maintenance
Depending on the operation made on a table partition, the indexes on the table will be
affected.

UPDATE GLOBAL INDEXES

When altering a table partition, you can add the
UPDATE GLOBAL INDEXES

clause, which will automatically maintain affected global indexes and partitions.
The clause is available in Oracle9i and later.

Oracle9i Database: Implement Partitioning 4-5

4-5 Copyright © Oracle Corporation, 2002. All rights reserved.

Modifying a Table or Indexing Logical
Properties

• You can modify the name of a partitioned table or
index, just like you can modify a nonpartitioned one.

• You can add, modify, or drop columns in a table,
like a nonpartitioned one.

• There are restrictions on modifying the columns
used for the partition key or if not all partitions are
available.

SQL> ALTER TABLE …
2 ADD (column type …)

SQL> RENAME name TO newname

Modifying Table Logical Properties
You use the ALTER TABLE statement to modify attributes of a table that are independent
of the physical organization of the table. For example, you can add a new column or
constraint, change the data type of a column, or enable an existing constraint. If the table is
partitioned, these attributes are common to all partitions.
Rules for altering the logical attributes of a table include the following:

• You cannot change the data type or length of a column that is used to partition the table
or index.

• You cannot add a column or change a column to the LONG or LONG RAW data type.
• If one or more partitions reside in a read-only tablespace, then:

- You cannot add a new column with user-specified default, such as ALTER TABLE
tab ADD (col NUMBER DEFAULT 6).

- You cannot modify an existing VARCHAR2 (or VARCHAR) column to be of type
CHAR (or CHARACTER).

- You cannot increase the length of an existing CHAR (or CHARACTER) column.

Oracle9i Database: Implement Partitioning 4-6

4-6 Copyright © Oracle Corporation, 2002. All rights reserved.

Modifying Partition Properties on the Table

• The row migration property can be enabled and
disabled.

• The default storage attributes of the table can be
altered.

SQL> ALTER TABLE simple ENABLE ROW MOVEMENT ;

SQL> ALTER TABLE simple MODIFY
2 DEFAULT ATTRIBUTES PCTFREE 50 ;

Modifying Partition Properties on the Table
These statements effect table-level changes on a partitioned table.

Row Movement
SQL> ALTER TABLE simple DISABLE ROW MOVEMENT ;

will disable future row movement.

Default Partition Storage Attributes
These default values are used when new partitions are created on this table or index. All
storage attributes can be specified.

Oracle9i Database: Implement Partitioning 4-7

4-7 Copyright © Oracle Corporation, 2002. All rights reserved.

Using the ALTER TABLE or INDEX
Commands

For RENAME, TRUNCATE, ADD, DROP, SPLIT, COALESCE,
MERGE, and MOVE commands, use the following:
SQL> ALTER TABLE table_name

2 operation PARTITION partition_name …

SQL> ALTER INDEX index_name
2 operation PARTITION partition_name …

SQL> ALTER TABLE table PARTITION (name) …

ORA-14052: partition-extended table name
syntax is disallowed in this context

ALTER TABLE / INDEX
The alter table / index command has special syntax for altering the partition. The command
fragment above shows the general syntax for both table and index alterations. The rest of the
statement is dependent on the operation. The operation can be RENAME, DROP, ADD,
SPLIT, COALESCE, MERGE, and MOVE.
You do not use the tablename PARTITION (partition_name) partition-
extended table name syntax, that is used in SELECTs, as shown in the second statement
fragment.

Local and Global Index
You can directly add or remove partitions of global indexes, but not on local indexes. Local
index partitions automatically follow these partition operations on the table.
You can rename, move, and alter storage attributes on both global and local index partitions.

Parallelization
Operations that modify rows or the global index update can be made parallel by adding the
PARALLEL n clause.
If the table has a default parallelization clause, it can be suppressed by using the
NOPARALLEL clause.

Oracle9i Database: Implement Partitioning 4-8

4-8 Copyright © Oracle Corporation, 2002. All rights reserved.

Renaming a Partition

SQL> ALTER TABLE tab_hash
2 RENAME PARTITION SYS_P451 TO HASH_1 ;

Renaming a Partition
There are no restrictions on renaming partition names. The partition name must be unique
within the affected table or index.
To rename the table or index, whether partitioned or not, use one of these two statements:

RENAME old table TO new table ;
ALTER TABLE old table RENAME TO new table ;

Oracle9i Database: Implement Partitioning 4-9

4-9 Copyright © Oracle Corporation, 2002. All rights reserved.

Partition Storage Changes

• TRUNCATE (DROP)

• MODIFY: Partition storage

SQL> ALTER TABLE tab TRUNCATE PARTITION px ;

SQL> ALTER TABLE tab MODIFY PARTITION px
2 ALLOCATE EXTENT (SIZE 100M) ;

Partition Storage Changes
Partition or subpartition segments that occupy space in the tablespaces can have their storage
attributes modified like nonpartitioned tables and indexes. The same restrictions apply: they
cannot truncate smaller than the initial allocation, cannot deallocate less than the highest one
used, and PCTFREE takes effect only for new blocks, and so on.

TRUNCATE
This command discards the data rows in the partition, and drops all but the initial storage,
unless the REUSE option is used. Global indexes are marked UNUSABLE unless the
UPDATE GLOBAL INDEXES clause is added. Corresponding local indexes are also
truncated, and remain or become valid.
TRUNCATE TABLE tablename will truncate all partitions.

MODIFY - Partition Storage
Storage attributes include ALLOCATE EXTENT, DEALLOCATE UNUSED, PCTFREE,
PCTUSED, (NO)LOGGING, STORAGE (…), LOB storage clauses, IOT OVERFLOW
storage, and so on.
Note: Storage attributes are changed when moving a partition. The MODIFY PARTITION
clause is also used for operations not involving partition storage, as will be shown later.

Oracle9i Database: Implement Partitioning 4-10

4-10 Copyright © Oracle Corporation, 2002. All rights reserved.

Moving a Partition

• Moving a partition places it in a new tablespace.
– All storage attributes can be modified.
– The partition is reorganized.

• All partition types can be moved: range, list, hash,
and subpartitions

• Both table and index partitions can be moved:
– Use MOVE for table partitions
– Use REBUILD for index partitions

Moving a Partition
You can move a nonpartitioned table, using:
ALTER TABLE tablename MOVE [ONLINE] ;
In order to move the whole partitioned table, move all of its partitions.
You can only move one partition at a time. Parallel sessions can move each partition
separately.
Global indexes are marked UNUSABLE, unless the UPDATE GLOBAL INDEXES
command is specified. Local indexes are moved and marked UNUSABLE, unless the
partition is empty.

Oracle9i Database: Implement Partitioning 4-11

4-11 Copyright © Oracle Corporation, 2002. All rights reserved.

Moving a Partition: Example

SQL> ALTER TABLE simple
2 MOVE PARTITION p2
3 TABLESPACE data03
4 PCTFREE 95 ;

SQL> ALTER INDEX s_glo
2 REBUILD PARTITION sg_1
3 TABLESPACE data03 ;

Moving a Partition: Example
To move a subpartition of a composite partitioned table or index, the keyword
SUBPARTITION is used instead of PARTITION.
Indexes and tables are not moved, they are rebuilt.
When moving a table partition or rebuilding an index partition, all storage attributes can be
specified, thus altering them during the move or rebuilding.

Oracle9i Database: Implement Partitioning 4-12

4-12 Copyright © Oracle Corporation, 2002. All rights reserved.

Adding a Partition

• For Range Partition, a new partition is added at the
end.
– Specify a new high end value
– Cannot add if MAXVALUE partition exists
– Does not mark global indexes UNUSABLE

• For Hash Partition and Hash Subpartition, a added
partition will receive rows redistributed from other
partitions.

• For List Partition, a added partition is added as
specified.

• Cannot add a partition to a global index
– Local indexes follow the table

Adding a Partition
Adding a partition has different side effects for the different partition types.

Range and List
For Range and List partitions, an empty partition segment is created because it cannot
contain rows (such rows would have been illegal to INSERT before, being outside allowed
partition keys). The addition has no effect on global indexes. Local index partitions are
created to match the table partition.

Hash and Hash Subpartition
For the Hash or composite hash subpartition, the addition of another hash partition means
that existing rows of another existing hash partition would have been placed in this new
partition had it existed before. The hash distribution changes by the addition of a new hash
partition or subpartition. Consequently, these rows are immediately migrated. This will mark
global and local index partitions UNUSABLE.

Local Index Storage
Added local index partitions are stored in the same tablespace as the table partition, unless
the index has a storage default defined at the index level.

Oracle9i Database: Implement Partitioning 4-13

4-13 Copyright © Oracle Corporation, 2002. All rights reserved.

When to Add a Partition

A partition is added when:
• Changes in data require it:

– Rolling window (range partition)
– New key values (list partition)

• The quantity of data increases
Spread over more storage (hash partition)

When to Add a Partition
For tables with rolling windows, you need to add a partition with the new time interval as
time passes.
If you have the list partitioned on office locations, you can add another partition when the
company expands.
You can add new hash partitions in tablespaces on new disk drives to further spread the IO
load. A similar effect can be achieved by adding more data files from different drives to the
tablespaces containing the table or table partitions, but this will leave tables large and
unwieldy.
If you expand the number of CPUs on your server hardware, you want to change the degree
of parallelism. For maximum efficiency, you may want to increase the number of partitions,
especially hash partitions, in a table to match.

Not Adding a Partition
You cannot add a range partition in the middle; to do that, you must split a partition.You
cannot add another range partition if the MAXVALUE partition exists; you must split the last
partition instead.
You cannot add another partition if you reach the maximum of 65534 partitions of a single
partitioned table. A few thousand partitions might be a practical maximum.

Oracle9i Database: Implement Partitioning 4-14

4-14 Copyright © Oracle Corporation, 2002. All rights reserved.

Adding a Partition: Examples

• List-partitioned table:

• Hash-partitioned table:

SQL> ALTER TABLE tab_hash ADD
2 PARTITION p3
3 TABLESPACE data03
4 UPDATE GLOBAL INDEXES ;

SQL> ALTER TABLE tab_list ADD
2 PARTITION p3
3 VALUES ('NEW')
4 TABLESPACE data03 ;

Adding Partition Examples
When adding a partition, all partition attributes, such as partition name and storage attributes,
can be specified or omitted, in which case the table level defaults will be used.
Only one partition can be added. Multiple additions require multiple statements.

List and Range
The addition of a range partition is very similar to the addition of a list partition. The
difference is that the VALUES LESS THAN (…) clause is used instead of VALUES (…).
MAXVALUE can be specified.
For a list partitioned table, the added key values must be unique to the existing key values,
including the NULL key value.
Global indexes are not affected. Local indexes have a corresponding partition added, using
the default storage parameters defined on the index.

Hash and Subpartition
Note the rearrangement of the existing rows in the diagram.
Local indexes will have a corresponding partition added. Affected local index partitions and
global indexes are marked UNUSABLE.

Oracle9i Database: Implement Partitioning 4-15

4-15 Copyright © Oracle Corporation, 2002. All rights reserved.

Adding a Subpartition: Example

Composite partitioned table:

SQL> ALTER TABLE simple
2 MODIFY PARTITION s1
3 ADD SUBPARTITION
4 s1_h3 ;

Adding a Subpartition Example
If you need to place the local index segment, you can move it after creation or alter the
index default storage before creation.

Oracle9i Database: Implement Partitioning 4-16

4-16 Copyright © Oracle Corporation, 2002. All rights reserved.

Dropping a Partition

• Discards the rows contained quickly, without
rollback

• Only Range and List Partitions can be dropped.
• One partition must remain.
• You can drop a partition from a global index.

– Cannot drop the last partition
– The previous partition is marked UNUSABLE, unless

the dropped partition is empty
• Local indexes partitions follow the table partitions.

Dropping a Partition
Dropping a partition will discard the rows stored in that partition as a DDL statement. It can
not be rolled back. It executes quickly, and uses few system resources (Undo and Redo).
You must be the owner of the table or have the DROP ANY TABLE privilege to drop a
partition.
You cannot drop a partition of a hash-partitioned table.
If a table contains only one partition, you cannot drop the partition. You must drop the table.
For range partitioned tables, dropping a partition does not make inserts of the dropped range
invalid; they are now part of the next higher partition. If the dropped partition was the
highest partition, possibly even if it had MAXVALUE as its end range, then inserts to the
missing partition do fail.

Indexes
You cannot drop local indexes directly. Corresponding local index partitions are dropped
regardless of status, when table partition is dropped.
You can drop a partition of a global index. The dropped index entries are recreated in the
next higher partition on rebuilding.

Oracle9i Database: Implement Partitioning 4-17

4-17 Copyright © Oracle Corporation, 2002. All rights reserved.

When to Drop a Partition

When changes in data require it:
• Rolling window (range partition)
• Obsolete key values (list partition)

When to Drop a Partition
For tables with rolling timeframes, you need to drop a partition with the old data as time
passes.
For a list partitioned table, you can drop a partition when some partition key values are of no
further use.
When dropping or adding a hash partition, it is recommended that you work toward ending
up with a power of two number of hash partitions, for optimal data spread across partitions.

Not Dropping a Partition
If you want to remove the range key but want to keep the data, that is, have all the data in
fewer partitions, then you should merge the partition.

Oracle9i Database: Implement Partitioning 4-18

4-18 Copyright © Oracle Corporation, 2002. All rights reserved.

Dropping a Partition: Examples

SQL> ALTER TABLE tab_range
2 DROP PARTITION p_q ;

A

G

Q

MAX

A

G

Q MAX

SQL> ALTER TABLE tab_range
2 DROP PARTITION p_max ;

A

G

A

G

MAX

Dropping a Partition: Example
Only one partition can be dropped. Multiple drops require multiple statements.
“G” to “P” rows that were stored in the third partition are discarded. If any new “G” to “P”
rows are inserted they will be stored in the partition that is now the third partition.
After the second drop partition statement, only rows less than “G” can be added.

Oracle9i Database: Implement Partitioning 4-19

4-19 Copyright © Oracle Corporation, 2002. All rights reserved.

Splitting and Merging a Partition

• Splitting a partition creates two new partitions filled
with rows of the split partition, which is discarded.

• Merging a partition collects the rows from two
partitions and drops one of them.

• For range partitions, it involves two consecutive
partitions.

• Hash partitions or subpartitions cannot be split or
merged.

• You can split a partition on a global index.

Splitting and Merging a Partition
You can split any partition. For a range partitioned table, adding a partition instead of
splitting the highest partition gives different results. Adding gives a new highest partition. If
the last partition has a MAXVALUE value, then you can split it to add another partition under
the MAXVALUE partition.
A global range partitioned index has the last partition set to MAXVALUE, thus you cannot
add partitions, but you can split partitions.
When you split a list partitioned table, you specify the key values of one split partition. The
remaining keys go into the other split partition.
When you split a range partitioned table, specify the split value. This becomes the VALUES
LESS THAN value of one of the new split partitions, and the other inherits the VALUES
LESS THAN value of the original partition.
If the table is composite partitioned, you can specify the subpartitioning attributes for the
new split partitions. Default is the same subpartitioning as the original split partition.
One or both local index partitions that result from the split will be marked UNUSABLE
depending on whether the corresponding table partitions have any rows in them after the
split. Global indexes are marked UNUSABLE.

Oracle9i Database: Implement Partitioning 4-20

4-20 Copyright © Oracle Corporation, 2002. All rights reserved.

Splitting and Merging:
List Partitions

SQL> ALTER TABLE simple SPLIT
2 PARTITION p_lo_me
3 VALUES ('LOW') INTO
5 (PARTITION s_lo
6 , PARTITION s_me
7 TABLESPACE data04) ;

SQL> ALTER TABLE simple MERGE
2 PARTITIONS s_lo, s_me
3 INTO PARTITION p_lo_me ;

'LOW'

p_lo

'MED'

p_me

'HIGH'

p_hi

'HIGH'

p_hi

'LOW',
'MED'

p_lo_me

Splitting and Merging Examples on a List Partitioned Table
The table above is a list partitioned table, with the key values 'LOW', 'MED' on p_lo_me
and 'HIGH' on p_hi.

Split (List and Range)
Omitted storage attributes are inherited from the original partition, not the table level
defaults. If you omit the whole partition specification (PARTITION s_lo,
PARTITION s_me TABLESPACE data04), the two split-off partitions get a default
name, SYS_Pnnnn.
Both new split partitions are new, and all rows have been moved.

Oracle9i Database: Implement Partitioning 4-21

4-21 Copyright © Oracle Corporation, 2002. All rights reserved.

Splitting and Merging:
Range Partitions

SQL> ALTER TABLE simple SPLIT
2 PARTITION p_100
3 AT (75) INTO
5 (PARTITION s_75
6 , PARTITION s_100
7 TABLESPACE data04) ;

SQL> ALTER TABLE simple MERGE
2 PARTITIONS p_75, p_100
3 INTO PARTITION p_100
4 TABLESPACE data03 ;

> 50

> 100

p_50

p_100

> 50

p_50

> 100

p_100

> 75

p_75

Splitting and Merging Examples on a Range Partitioned Table
The table above is a range partitioned table, with the key values for VALUES LESS THAN
are 50 on p_50 and 100 on p_100.

Merge (List and Range)
You can specify all storage options for the new merged partition. Omitting them will use the
table level defaults, not the inherited attributes from either of the original partitions.

Oracle9i Database: Implement Partitioning 4-22

4-22 Copyright © Oracle Corporation, 2002. All rights reserved.

Altering List Partition Key Values

The key list in a list partition can be altered, as long
as no rows are affected.
SQL> ALTER TABLE simple MODIFY

2 PARTITION p_high
3 ADD VALUES ('ULTRA', 'EXTREME') ;

SQL> ALTER TABLE simple MODIFY
2 PARTITION p_high
3 DROP VALUES ('ULTRA') ;

Altering List Partition Key Values
Because altering list partition key values does not affect any rows, global and local indexes
are not affected.
The DROP VALUES operation will fail if any rows match. This check will be faster if there
is an index on the list partition keys.

Oracle9i Database: Implement Partitioning 4-23

4-23 Copyright © Oracle Corporation, 2002. All rights reserved.

Coalescing a Partition

• The COALESCE command for hash and subpartitions
has the same effects as the MERGE command on
non-hash partitions:
– Rows are distributed to other partitions.
– The partition is dropped.

• Using the COALESCE command for a partition of an
IOT table will reorganize the IOT.

Coalescing a Partition
The two operations, merging a hash partition and reorganizing a partition of an IOT table,
are quite separate and distinct, with different syntax.

Hash Partition and Subpartition
You cannot specify which partitions are involved. This is a limitation of the hashing system.
The operation reduces the number of hash partitions by one.

Partition of an IOT
You can specify which partition is to be reorganized. You can also coalesce a nonpartitioned
IOT table.

Oracle9i Database: Implement Partitioning 4-24

4-24 Copyright © Oracle Corporation, 2002. All rights reserved.

Coalescing a Partition: Examples

• Coalesce (merge hash partition)

• Coalesce (reorganize IOT)

SQL> ALTER TABLE simple COALESCE
PARTITION ;

SQL> ALTER TABLE simple MODIFY
PARTITION p1 COALESCE ;

Coalescing a Partition: Examples
For coalescing a subpartition, the syntax is:

ALTER TABLE simple MODIFY
PARTITION p1 COALESCE SUBPARTITION ;

This syntax is very similar to the coalescing of an IOT partition.
The coalescing of an IOT partition can specify storage attributes for the reorganized
partition as it gets moved.

Oracle9i Database: Implement Partitioning 4-25

4-25 Copyright © Oracle Corporation, 2002. All rights reserved.

Exchanging a Partition with a Table

• A range or hash partition can be exchanged with a
nonpartitioned table.
– This is done by swapping the names.
– You can work offline on the swapped data.
– A hash subpartition can be swapped with a hash

partition.
• The nonpartitioned table must have the same

structure as the partitioned table.
• The exchange operation will verify partition key

conformity by default.

Exchanging a Partition with a Table
The operation does not move the rows.
There is no restriction on the table or partition being empty or having any number of rows.
The two tables must have the same column names, in the same order,and with the same data
type.
The two tables can have different indexes, grants, owners, triggers, and constraints.
Typically, the nonpartitioned table has less of these.
Local indexes partitions are exchanged with matching nonpartitioned indexes defined on the
nonpartitioned table.
Global indexes on the partitioned table are marked UNUSABLE. Indexes on the
nonpartitioned table, which are not exchanged with a local index, are marked UNUSABLE
and are not maintained with a UPDATE GLOBAL INDEXES clause.

Partition Key Conformity
The table rows may have been entered without any value constraints. When these are
exchanged with a partition, the partition key column values must be valid values of the
partition. This is verified before the exchange takes place by scanning the nonpartitioned
table rows. Using the NOVALIDATE clause will skip this validation.

Oracle9i Database: Implement Partitioning 4-26

4-26 Copyright © Oracle Corporation, 2002. All rights reserved.

Exchanging a Partition: Example

SQL> ALTER TABLE simple
2 EXCHANGE PARTITION s_h1
3 WITH TABLE tiny
4 INCLUDING INDEXES
5 WITHOUT VALIDATION ;

SQL> ANALYZE TABLE simple
2 PARTITION (s_h1)
3 VALIDATE STRUCTURE
4 INTO INVALID_ROWS ;

Exchanging a Partition: Example
In this example the indexes are exchanged, too. There is no validation of the rows
conforming to partition key values.
You can create the standalone table with

CREATE TABLE tiny AS SELECT * FROM simple WHERE ROWNUM<1 ;

The partitioned table must only contain one partition.
The nonpartitioned table does not need to be owned by the same user as the partitioned table.

Validation After Exchange
In this example, a validation to detect rows that do not belong in the partition is executed
after the exchange has completed. The ROWIDs of invalid rows are stored in the table
INVALID_ROWS.
Scanning the table rows before or after the exchange takes time, depending on the size of the
table.
If invalid partition key values are entered into the partitioned table with the exchange, then
such records will not be returned by a query where partition elimination causes only scans in
the proper partitions. This is true of all partition types.

Oracle9i Database: Implement Partitioning 4-27

4-27 Copyright © Oracle Corporation, 2002. All rights reserved.

Rebuilding Indexes

• If the partition operation has made an index
unusable, it must be rebuilt.

• If the index is invalid, it must be dropped and re-
created.

• Partitioned indexes must have each affected
partition processed separately. You cannot rebuild a
partitioned index as one whole index.

Rebuilding Indexes
Global indexes maintained with UPDATE GLOBAL INDEXES do not become
UNUSABLE.

Oracle9i Database: Implement Partitioning 4-28

4-28 Copyright © Oracle Corporation, 2002. All rights reserved.

Rebuilding an Index: Examples

SQL> ALTER INDEX s_glo
2 REBUILD PARTITION s_g1 ;

SQL> ALTER TABLE simple
2 MODIFY PARTITION s_h1
3 REBUILD UNUSABLE LOCAL INDEXES ;

SQL> ALTER TABLE simple
2 MODIFY SUBPARTITION sys_subp453
3 REBUILD UNUSABLE LOCAL INDEXES ;

SQL> ALTER INDEX s_cmp_idx
2 REBUILD SUBPARTITION sys_subp453 ;

Rebuilding an Index: Examples
Rebuilding leaves the index in the same physical location only if it was unusable.
The command completes without error if the index was normal and usable before.
The first command will work on both global index partitions and local index partitions.
The first example rebuilds one global or local index partition, and the second example
rebuilds all the local index partitions that correspond to the table partition.
The third and forth example are the corresponding syntax for index subpartitions.

Oracle9i Database: Implement Partitioning 4-29

4-29 Copyright © Oracle Corporation, 2002. All rights reserved.

Benefits and Costs of
UPDATE GLOBAL INDEXES

When using the UPDATE GLOBAL INDEXES clause:
Global indexes remain useable and available, even
during the partition operation.
You do not have to perform a number of rebuild
operations.
The partition operation will take longer.
The resultant global index may be larger.
You can not specify NOLOGGING.

Benefits of UPDATE GLOBAL INDEXES
The global index is updated in conjunction with the base table operation. You are not
required to later and independently rebuild the global index.
There is higher availability for global indexes, since they do not get marked UNUSABLE.
The index remains available even while the partition DDL is executing and it can be used to
access other partitions in the table.
You avoid having to look up the names of all UNUSABLE global indexes partitions used for
rebuilding them.

Costs of using UPDATE GLOBAL INDEXES
The partition DDL statement takes longer to execute since indexes which were previously
marked UNUSABLE are updated. A rule of thumb is that it is faster to update indexes if the
size of the partition is less that 5% of the size of the table.
The DROP, TRUNCATE, and EXCHANGE operations are no longer fast operations.
Updates to the index are logged, and redo and undo records are generated. If the entire index
is being rebuilt, it can optionally be done NOLOGGING.
Rebuilding the entire index creates a more efficient index, since it is more compact with
space better utilized. Further rebuilding the index allows you change storage options.

Oracle9i Database: Implement Partitioning 4-30

4-30 Copyright © Oracle Corporation, 2002. All rights reserved.

IOT Overflow and LOB Segments

• When altering table partitions:
– any LOB partitions will correspondingly change.
– Any OVERFLOW partitions will correspondingly change.
– Storage attributes of LOB or OVERFLOW segments can

be explicitly specified.

IOT OVERFLOW and LOB Segments
Specification for LOB segments and OVERFLOW segments attributes and storage attributes
can be placed where partition storage attributes are specified. The same syntax is used as
that used when these attributes were specified at the time the table was created.

Oracle9i Database: Implement Partitioning 4-31

4-31 Copyright © Oracle Corporation, 2002. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Modify attributes of a partitioned table or index
• Drop, add, split, merge, coalesce, move, exchange,

and truncate partitions on tables
• Drop, split, merge, and rebuild partitions on indexes
• List the index invalidations that occur with separate

table partition operations

Oracle9i Database: Implement Partitioning 4-32

4-32 Copyright © Oracle Corporation, 2002. All rights reserved.

Practice Overview:
Altering Table and Index Partition Attributes

This practice covers the following topics:
• Splitting and merging a partitioned table, including

impossible attempts
• Splitting and merging a partitioned table, checking

and fixing index usability changes
• Performing simple exchange operations

Copyright © Oracle Corporation, 2002. All rights reserved.

Partitioning Interaction

Oracle9i Database: Implement Partitioning 5-2

5-2 Copyright © Oracle Corporation, 2002. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the behavior of partitioned tables and

indexes with other database features and utilities
• Describe Oracle Enterprise Manager support of

partitioned objects

Oracle9i Database: Implement Partitioning 5-3

5-3 Copyright © Oracle Corporation, 2002. All rights reserved.

Using Partitioned Tables

Simply refer to the table as usual
• Partitioning pruning is automatic.
• Partition-wise joins are automatic.
• Share locks can occur on table, partition, or row

level.

Using Partitioned Tables
Applications should be unaware that the table is partitioned. Heap tables return the rows
grouped by the partition when compared to nonpartitioned tables.
The partitioning pruning and other optimizer access changes occur irrespective of whether
table has been analyzed or not. The optimizer uses the structural definition of the partitions,
that is, the partition key values, to determine if partitions can be skipped. Analyzing the
partition tables and indexes is still recommended for the optimizer to choose between table
scans and index scans, for example.
Partitions that are skipped can be offline or unusable for other reasons, without affecting the
statement execution.
An operation that only needs a partition, will only place locks on that partition, not on the
whole table.

Oracle9i Database: Implement Partitioning 5-4

5-4 Copyright © Oracle Corporation, 2002. All rights reserved.

Pruning Rules

Partition Pruning varies slightly with type of partition
and query
• Range Partition will select one contiguous range of

partitions
– Equality and Range

• List Partition can select a number of partitions
– Equality, range and IN lists

• Hash Partition will only prune on equality
– Equality and IN lists

• The pruning also works with joins
• The pruning also works with bind variables

Pruning Rules
All partition pruning, or elimination, occurs based on the data dictionary static definition of
the partitions.
Composite Partitioning works like Range and Hash respectively at each partition level, that
is, the query should specify something on both partition and subpartition key.
The join condition has to yield something similar to a simple query for the pruning to work
with the join, that is the join must be on the partition key.

Oracle9i Database: Implement Partitioning 5-5

5-5 Copyright © Oracle Corporation, 2002. All rights reserved.

Partition-wise Joins

• Partition-wise join can occur when one or both
tables of a join are partitioned on the join key

Partition-wise Joins
Partition-wise joins reduce query response time by minimizing the amount of data
exchanged among parallel execution servers when joins execute in parallel. This
significantly reduces response time and improves the use of both CPU and memory
resources. In Oracle Real Application Cluster environments, partition-wise joins also avoid
or at least limit the data traffic over the interconnect, which is the key to achieving good
scalability for massive join operations.
Partition-wise joins can be full or partial. The Oracle server decides which type of join to
use. This depends on the table partition keys, the join key, and if the tables are
equipartitioned.
The subject is covered further in the Oracle9i: Data Warehouse Administration course.

Oracle9i Database: Implement Partitioning 5-6

5-6 Copyright © Oracle Corporation, 2002. All rights reserved.

ANALYZE and Partitioned Objects

• You can collect table, index, and column statistics
for a single partition or subpartition of a table or
index.

• You can validate the structure for a single partition
or subpartition of a table or index.

• You can list chained rows for a single partition or
subpartition.

• You can collect histograms for a single partition or
subpartition.

ANALYZE TABLE sales SUBPARTITION (jan02)
COMPUTE STATISTICS;

Analyzing Partitioned Objects
The target of the ANALYZE statement can be a single subpartition, a single partition, or the
whole table or index.

• Specifying the whole table or index, when the table or index is partitioned, or a partition
that is subpartitioned, is interpreted as a request to analyze all partitions or subpartitions.

• The ANALYZE statement generates combined table, index, and column statistics for a
combined partitioned table or index by merging the statistics from the subpartitions. The
ANALYZE statement does not generate combined histograms.

• If the optimizer finds that there are subpartitions of interest that have not been analyzed,
it uses the table and index defaults for each subpartition.

• The VALIDATE STRUCTURE INTO INVALID_ROWS statement verifies that the
row belongs to the correct partition. If the row does not collate correctly, the rowid is
inserted in the INVALID_ROWS table.

Oracle9i Database: Implement Partitioning 5-7

Analyzing Partitioned Objects (continued)
The UTLVALID.SQL script, located in $ORACLE_HOME/rdbms/admin, creates the
following INVALID_ROWS default table:

create table INVALID_ROWS
(owner_name varchar2(30),
table_name varchar2(30),
partition_name varchar2(30),
subpartition_name varchar2(30),
head_rowid rowid,
analyze_timestamp date

);

Oracle9i Database: Implement Partitioning 5-8

5-8 Copyright © Oracle Corporation, 2002. All rights reserved.

Data Dictionary Views
Statistics

Name

DBA_*PART_HISTOGRAMS

DBA_*PART_COL_STATISTICS

Purpose

Histogram end points

Column statistics and
histogram information

* SUB variation

Data Dictionary Views Analyze
The partition statistic correspond to the statistics for nonpartitioned tables in
DBA_TAB_HISTOGRAMS and DBA_TAB_COL_STATISTICS.

Oracle9i Database: Implement Partitioning 5-9

5-9 Copyright © Oracle Corporation, 2002. All rights reserved.

SQL*Loader and Partitioned Objects

• Partitioned tables can be loaded using conventional
path.

• Partitioned tables can be loaded sequentially using
direct path.

• A single table partition can be loaded in parallel
using direct path.

SQL*Loader and Partitioned Objects
SQL*Loader can perform the following tasks on partitioned objects:

• Load a single partition or subpartition of a partitioned table. This can be done by
specifying the partition or subpartition extended table name in the INTO TABLE clause.

• Load all partitions of a partitioned table
SQL*Loader has the flexibility to handle operations on partitioned objects using
conventional path, direct path, and parallel direct path.

Oracle9i Database: Implement Partitioning 5-10

5-10 Copyright © Oracle Corporation, 2002. All rights reserved.

SQL*Loader Conventional Path

Partitioned tables can be loaded using conventional
path:
• The load uses SQL INSERT statements.
• The mapping of rows to a partition or subpartition is

handled transparently by SQL.
• You can run multiple loads on the same table

concurrently.

Conventional Path
The load uses SQL INSERT statements, which distribute the input rows to the correct
partitions and update both local and global indexes.

• You can run multiple loads on the same table concurrently.
• You can load a single table partition via the conventional path.
• You must specify the table name and the partition name in the load control file.
• Rows that do not belong to that partition are written to the BADFILE file.
• You can load different partitions in the same table concurrently.

Oracle9i Database: Implement Partitioning 5-11

5-11 Copyright © Oracle Corporation, 2002. All rights reserved.

SQL*Loader Direct Path
Sequential Loads

You can sequentially load a partitioned table through
the direct path:
• Indexes are built automatically.
• When loading a direct path in a single partition:

– Local indexes can be maintained by the load.
– Global indexes cannot be maintained by the load.

Direct Path Sequential Loads
If you use the direct path load:

• Indexes are built automatically.
• You must specify the table name and the partition name and set DIRECT = TRUE.
• If there are no global indexes, you can run sequential direct path loads on different

partitions of the same table concurrently.
• Referential integrity and check constraints must be disabled.
• Triggers must be disabled.

Oracle9i Database: Implement Partitioning 5-12

5-12 Copyright © Oracle Corporation, 2002. All rights reserved.

SQL*Loader Direct Path
Parallel Loads

You can parallel load a single table partition through
the direct path:
• You must specify the table name and the partition

name, and:
– set DIRECT = TRUE
– set PARALLEL = TRUE

• The corresponding partition in each local index is
marked UNUSABLE.

• There must be no global indexes on the table.
• You can run parallel direct path loads on different

partitions of the same table concurrently.

Direct Path Parallel Loads
You can parallel load a single table partition using direct path.

• You must specify the table name and the partition name and set DIRECT = TRUE and
PARALLEL = TRUE.

• The corresponding partition in each local index is marked UNUSABLE. You must rebuild
the partitions explicitly after the load completes.

• There must be no global indexes on the table. You must drop them before loading and
re-create them after the load completes.

• You can run parallel direct path loads on different partitions of the same table
concurrently.

Parallel direct path loads are used for intrasegment parallelism. Intersegment parallelism can
be achieved by concurrent single partition direct path loads, with each load session loading a
different partition of the same table. When loading a parallel direct path in a single partition,
consider that neither local or global indexes can be maintained by the load.

Oracle9i Database: Implement Partitioning 5-13

5-13 Copyright © Oracle Corporation, 2002. All rights reserved.

Export and Import

You can export or import one or more specified
partitions or subpartitions within a table using the
partition or subpartition name.

imp hr/hr TABLES=(hr.orders:q1_h1, \

hr.orders:q1_h2,hr.employees,sales:p1)

exp hr/hr TABLES=(hr.orders:q1_h1, \
hr.orders:q1_h2,hr.employees,sales:p1)

Export and Import
In this example, ORDERS is a composite partitioned table, and Q1_H1 and Q1_H2 could be
either a partition or a subpartition. If Q1_H1 and Q1_H2 are partitions, all of the
subpartitions are exported.
The HR.EMPLOYEES table can be a partitioned or nonpartitioned table. The SALES table,
however, must be a partitioned table, and P1 must be one of its partitions or subpartitions.
Import provides the following additional option:

• Import creates a composite partitioned table if the exported table was composite
partitioned.

• Subpartition export is supported only in Table mode.
• You must specify the table name:subpartition name.

Oracle9i Database: Implement Partitioning 5-14

5-14 Copyright © Oracle Corporation, 2002. All rights reserved.

Export

Export: Release 9.0.1.0.0 - Production on Thu Jan 3 06:42:33 2002
Format: EXP KEYWORD=value or KEYWORD=(value1,value2,...,valueN)
Example: EXP SCOTT/TIGER GRANTS=Y TABLES=(EMP,DEPT,MGR)

or TABLES=(T1:P1,T1:P2), if T1 is partitioned table
Keyword Description (Default) Keyword Description (Default)
--
USERID username/password FULL export entire file (N)
BUFFER size of data buffer OWNER list of owner usernames
FILE output files (EXPDAT.DMP) TABLES list of table names
COMPRESS import into one extent (Y) RECORDLENGTH length of IO record
GRANTS export grants (Y) INCTYPE incremental export type
INDEXES export indexes (Y) RECORD track incr. export (Y)
DIRECT direct path (N) TRIGGERS export triggers (Y)
LOG log file of screen output STATISTICS analyze objects
(ESTIMATE)
ROWS export data rows (Y) PARFILE parameter filename
CONSISTENT cross-table consistency CONSTRAINTS export constraints (Y)
...
TTS_FULL_CHECK perform full or partial dependency check for TTS
VOLSIZE number of bytes to write to each tape volume
TABLESPACES list of tablespaces to export
TRANSPORT_TABLESPACE export transportable tablespace metadata (N)
TEMPLATE template name which invokes iAS mode export

Exporting Partitioned Objects
Export provides the following options:

• Table export is supported in all modes (Full, User, Table).
• Partition export is supported only in Table mode.
• You must specify the table name:partition name.
• The keyword QUERY allows you to select a subset of rows from a table while

performing a table mode export. The value of the query parameter is a string that
contains a WHERE clause for a SQL select statement that will be applied to all tables (or
table partitions) listed in the TABLE parameter. For example, if user HR wants to export
only those employees in department 10, he could do the following:

exp hr/hr tables=employees query="where department=10"

• Export supports writing to multiple export files and Import can read from multiple
export files. If you specify a value (byte limit) for the FILESIZE parameter, Export
will write only the number of bytes you specify to each dump file. When the amount of
data Export must write exceeds the maximum value you specified for FILESIZE, it
will get the name of the next export file from the FILE parameter.

Oracle9i Database: Implement Partitioning 5-15

5-15 Copyright © Oracle Corporation, 2002. All rights reserved.

Import

Import: Release 9.0.1.0.0 - Production on Thu Jan 3 06:42:49 2002
Format: IMP KEYWORD=value or KEYWORD=(value1,value2,...,valueN)
Example: IMP SCOTT/TIGER IGNORE=Y TABLES=(EMP,DEPT) FULL=N

or TABLES=(T1:P1,T1:P2), if T1 is partitioned table
Keyword Description (Default) Keyword Description (Default)
--
USERID username/password FULL import entire file (N)
BUFFER size of data buffer FROMUSER list of owner usernames
FILE input files (EXPDAT.DMP) TOUSER list of usernames
SHOW just list file contents (N) TABLES list of table names
IGNORE ignore create errors (N) RECORDLENGTH length of IO record
GRANTS import grants (Y) INCTYPE incremental import type
INDEXES import indexes (Y) COMMIT commit array insert (N)
ROWS import data rows (Y) PARFILE parameter filename
...
TOID_NOVALIDATE skip validation of specified type ids
COMPILE compile procedures, packages, and functions (Y)
VOLSIZE number of bytes in file on each volume of a file on tape
The following keywords only apply to transportable tablespaces
TRANSPORT_TABLESPACE import transportable tablespace metadata (N)
TABLESPACES tablespaces to be transported into database
DATAFILES datafiles to be transported into database
TTS_OWNERS users that own data in the transportable tablespace set

Import and Partitioned Objects
Import provides the following options:

• You can import all the data of a partitioned or nonpartitioned table from a dump file into
a partitioned or nonpartitioned table.

• Import creates a partitioned table if the exported table was partitioned.
• If a table is partitioned, Import rejects any rows that fall above the values specified by
VALUES LESS THAN in the highest partition.

• Import is supported in all modes (Full, User, Tables).
• Partition import is supported only in Table mode.
• You must specify the table name:partition name.
• You can skip maintenance of unusable indexes using SKIP_UNUSABLE_INDEXES.

You can use TOID_NOVALIDATE to specify object types to exclude from TOID
comparison.When you import a table that references a type, but a type of that name already
exists in the database, Import attempts to verify that the preexisting type is in fact the type
used by the table. To do this, Import compares the type’s unique identifier (TOID) with the
identifier stored in the export file, and will not import the table rows if the TOIDs do not
match.

Oracle9i Database: Implement Partitioning 5-16

5-16 Copyright © Oracle Corporation, 2002. All rights reserved.

Partitioning and
Transporting Tablespaces

When transporting a tablespace set:
• Indexes inside the set of tablespaces must be

associated with a table contained in the tablespace
set.

• A partitioned table must be fully contained in the set
of tablespaces.

• The tablespace set you want to copy must contain
either all partitions of a partitioned table, or none of
the partitions of a partitioned table.

• If you want to transport a subset of a partition table,
you must exchange the partitions into tables before
copying the tablespace set.

Partition Considerations for Transportable Tablespaces
To determine whether a set of tablespaces is self-contained, you can invoke the
TRANSPORT_SET_CHECK procedure in the Oracle supplied package DBMS_TTS. You
must have been granted the EXECUTE_CATALOG_ROLE role (initially signed to SYS) to
execute this procedure.
When you invoke the DBMS_TTS package, you specify the list of tablespaces in the
transportable set to be checked for self-containment. You can optionally specify if
constraints must be included. For strict or full containment, you must additionally set the
TTS_FULL_CHECK parameter to TRUE.
The strict or full containment check is for cases that require capturing not only references
going outside the transportable set, but also those coming into the set. Tablespace Point-in-
Time Recovery (TSPITR) is one such case in which dependent objects must be fully
contained or fully outside the transportable set.

Oracle9i Database: Implement Partitioning 5-17

5-17 Copyright © Oracle Corporation, 2002. All rights reserved.

Self-Contained Check

Verify that SALES_1 and SALES_2 tablespaces are self-
contained:

SQL> EXECUTE dbms_tts.transport_set_check \
('sales_1,sales_2', TRUE);

Checking For Self Containment
In the example below, it is determined whether tablespaces sales_1 and sales_2 are self-
contained, with referential integrity constraints taken into consideration (indicated by
TRUE).

SQL>EXECUTE dbms_tts.transport_set_check('sales_1,sales_2', TRUE);

After invoking this PL/SQL package, you can see all violations by selecting from the
TRANSPORT_SET_VIOLATIONS view. The following query shows a case in which there
are two violations: a foreign key constraint, dept_fk, across the tablespace set boundary,
and a partitioned table, jim.sales, that is partially contained in the tablespace set.

SELECT * FROM TRANSPORT_SET_VIOLATIONS;
VIOLATIONS

Constraint DEPT_FK between table JIM.EMP in tablespace SALES_1 and
table JIM.DEPT in tablespace OTHER
Partitioned table JIM.SALES is partially contained in the
transportable set

Oracle9i Database: Implement Partitioning 5-18

5-18 Copyright © Oracle Corporation, 2002. All rights reserved.

Online Table Redefinition

With online table redefinition, you can:
• Modify the storage parameters of the table
• Move the table to a different tablespace in the same

schema
• Add support for parallel queries
• Add or drop partitioning support
• Re-create the table to reduce fragmentation

Online Table Redefinition
The mechanism for performing online redefinition is the DBMS_REDEFINITION PL/SQL
package. Execute privileges on this package are granted to EXECUTE_CATALOG_ROLE. In
addition to having execute privileges on this package, you must be granted the following
privileges:
•CREATE ANY TABLE
•ALTER ANY TABLE
•DROP ANY TABLE
•LOCK ANY TABLE
•SELECT ANY TABLE

Oracle9i Database: Implement Partitioning 5-19

5-19 Copyright © Oracle Corporation, 2002. All rights reserved.

Parallel Execution and Partitioning

• Long-running operations can be divided into
smaller operations, and executed in parallel on
individual partitions.

• The granule of parallelism is the partition, except for
composite partitions, where it is the subpartition.

• There is now limited support for parallelism within a
partition.

Partitioning and Parallelization
Parallel execution uses multiple slave processes working together to execute a single SQL
statement. By dividing the work necessary to execute a statement among multiple slave
processes, the RDBMS can execute statements more quickly than a single process. Parallel
execution can dramatically improve performance for data intensive operations associated
with DSS applications and VLDB environments.
Operations on partitioned tables and indexes are performed in parallel by assigning different
parallel execution servers to different partitions of the table or index.
Note: For more more information, please refer to the Oracle9i Data Warehouse
Administration course.

Oracle9i Database: Implement Partitioning 5-20

5-20 Copyright © Oracle Corporation, 2002. All rights reserved.

Parallelizable Operations

• DDL statements:
– CREATE TABLE AS SELECT
– CREATE INDEX

– Rebuild an index
– Rebuild an index partition
– Move a partition, split a partition

• DML statements: UPDATE, DELETE, INSERT…SELECT

• Queries: Table scans, nested loops, group by, order
by, hash joins, range scan on partitioned index

Oracle9i Database: Implement Partitioning 5-21

5-21 Copyright © Oracle Corporation, 2002. All rights reserved.

Enabling Parallel Execution

The ALTER SESSION statement enables parallel
execution:

ENABLEALTER SESSION
DISABLE

PARALLEL

FORCE

DML

DDL

PARALLEL n

QUERY

Enabling Parallel DML, DDL, and QUERY
This clause indicates that all subsequent queries, DML, or DDL issued against the RDBMS
be considered for parallel execution. It allows the default degree of parallelism of the table
to be overridden without changing the tables themselves. This clause can be executed only
between committed transactions. Uncommitted transactions must be committed or rolled
back prior to executing this clause for DML. You cannot specify the optional PARALLEL
integer with ENABLE or DISABLE.
•ENABLE executes subsequent statements in the session in parallel. This is the default for

DDL and query statements.
•DISABLE specifies that subsequent statements are executed serially. This is the default

for DML statements.
•FORCE forces parallel execution of subsequent statements in the session. If no parallel

clause or hint is specified, then a default degree of parallelism is used. This clause
overrides any parallel_clause specified in subsequent statements in the session, but is
overridden by a parallel hint.

Oracle9i Database: Implement Partitioning 5-22

Enabling Parallel DML, DDL, and QUERY (continued)

•PARALLEL integer: Explicitly specifies a degree of parallelism
- For FORCE DDL, the degree overrides any parallel clause in subsequent DDL

statements.
- For FORCE DML and QUERY, the degree overrides the degree currently stored for

the table in the data dictionary.
- A degree specified in a statement through a hint overrides the degree being forced.

The following types of DML operations are not parallelized regardless of this clause:
• Operations on clustered tables
• Operations with embedded functions that either write or read database or package states
• Operations on tables with triggers that could fire
• Operations on tables or schema objects that object types or LONG or LOB data types
•UPDATE or DELETE on nonpartitioned tables

Oracle9i Database: Implement Partitioning 5-23

5-23 Copyright © Oracle Corporation, 2002. All rights reserved.

OEM Schema Management Window

Schema Management Using OEM
With the Schema Management functionality, you can create, alter, or drop database schema
objects such as clusters, indexes, materialized views, tables, and partitioned tables, as well
as view dependencies of schema objects.

Autogenerate Range Partitioning Support
Instead of defining a large set of range partitions manually, the Create Table property pages
support creating this type of partition automatically. Range partitions can easily be defined
by specifying the earliest date or smallest number of those partitions, the length of time or
number of each partition, and the total number of partitions. OEM will automatically define
and name all partitions, allowing you to create a large number in one simple step.

Oracle9i Database: Implement Partitioning 5-24

5-24 Copyright © Oracle Corporation, 2002. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Describe the behavior of partitioned tables and

indexes with other database features and utilities
• Describe Oracle Enterprise Manager support of

partitioned objects

Oracle9i Database: Implement Partitioning 5-25

5-25 Copyright © Oracle Corporation, 2002. All rights reserved.

Practice Overview:
Working with Partitioned Tables and Indexes

This practice covers the following topics:
• Exporting and importing a partition
• SQL*loading into range partition table
• Self-containment checking of partitioned objects for

transportable tablespaces

Oracle9i Database: Implement Partitioning 5-26

Copyright © Oracle Corporation, 2002. All rights reserved.

Practical Partitioning

Oracle9i Database: Implement Partitioning 6-2

6-2 Copyright © Oracle Corporation, 2002. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Achieve a practical understanding of partitioning in

practice
• Provide an overview of performance-related issues
• Apply partitioning concepts to real-world scenarios

Oracle9i Database: Implement Partitioning 6-3

6-3 Copyright © Oracle Corporation, 2002. All rights reserved.

Areas of Benefit

Partitioning offers benefits in the following areas:
• Very Large Databases (VLDB)

– Data Warehouses
– Decision Support Systems

• Real Application Clusters environments
• Parallel execution

Areas That Can Benefit From Partitioning
You have seen how the use of partitioned tables and indexes greatly enhances the
performance and manageability of very large databases. With partitioned tables, your data
can be divided into partitions or even subpartitions. Indexes can be partitioned in similar
fashion. Each partition can be managed individually, and can function independently of the
other partitions, thus providing a structure that can be better tuned for availability and
performance.
Because of the nature of Real Application Clusters architecture, partitioning can be a great
aid in the reduction of block contention between instances.
Partitions also provide another method of implementing parallel execution. Operations on
partitioned tables and indexes are performed in parallel by assigning different parallel
execution servers to different partitions of the table or index.

Oracle9i Database: Implement Partitioning 6-4

6-4 Copyright © Oracle Corporation, 2002. All rights reserved.

Applications and Partitioning Strategies

• Database size increases
• Maintain same segmentation strategy
• New application functionality added

– Accessing disjointed data
– Should not change current strategy
– May impact systems using TP monitors
– Accessing same data
– May need to revisit partitioning strategy

Segmentation Strategy
When you design a segmentation strategy, you must consider its applicability to future
growth, or you will not have a scalable system. Some types of growth might not have a
major impact, while others may.
If the database increases in size simply because the tables grow, but for no other reason such
as the introduction of new tables or additional user requirements, then the current
partitioning strategy should work. In some cases, if you have physically partitioned your
tables, you may need to subpartition existing partitions. This is relatively simple and
transparent but may require some programming changes if you have built the partitions and
related views manually.
If the database is required to support new users and new functions, then the current strategy
may not work. In some cases, the new functionality only involves data that is already
disjointed based on the current segmentation strategy. In other cases, the strategy may have
to be reconsidered and even rebuilt. When it is based on the transaction model, the work to
rebuild the system can be very expensive. Even if the same segmentation strategy is still
valid, the addition of a new parallel instance can require substantial rewrites to code
handling transaction partitioning in order for it to recognize when to use the new instance.

Oracle9i Database: Implement Partitioning 6-5

6-5 Copyright © Oracle Corporation, 2002. All rights reserved.

Segmentation: Example

An airline business management system with the
following characteristics will help demonstrate
segmentation approaches:
• Phone reservations
• Air fleet management
• Sales and marketing
• Counter operations

Example of Segmentation
We will explore some segmentation approaches to see how an international airline could
partition the work and the objects related to a system. The basic functions of the database
used by this airline consist of the following:

• Phone reservations
• Air fleet management
• Sales and marketing
• Counter operations

Oracle9i Database: Implement Partitioning 6-6

6-6 Copyright © Oracle Corporation, 2002. All rights reserved.

Application Partitioning: Step 1

Define the major functional areas of the system:
• List the basic functions
• Group smaller functions into larger functions to

avoid too fine-grain components

Step 1: Define the Major Functional Areas of the System
Subdivide the major functions of the airline by geography for continuing analysis:

• USA phone reservations
• European phone reservations
• Asia/Pacific phone reservations
• Global air fleet management
• USA sales and marketing
• Non-USA sales and marketing
• USA counter operations
• Europe counter operations
• Africa counter operations
• Asia counter operations
• Australasia counter operations

Oracle9i Database: Implement Partitioning 6-7

6-7 Copyright © Oracle Corporation, 2002. All rights reserved.

Application Partitioning: Step 2

Phone
Reservations

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Counter
Operations

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Identify table access paths of each application

Step 2: Identify Table Access Paths of Each Application
In this step, list the tables involved in each application. This task is simplified for the
purpose of illustration by selecting just two of the functions of the fictional airline
company's system. The diagram lists the tables in order, under each of the functions. Your
diagram of the system would probably use alphabetic ordering of the table names.

Oracle9i Database: Implement Partitioning 6-8

6-8 Copyright © Oracle Corporation, 2002. All rights reserved.

Application Partitioning: Step 3

Phone
Reservations

Table 1

Table 2

Table 3

Table 4

Counter
Operations

Table 7

Table 8

Table 9

Table 10

Overlaps

Table 5

Table 6

Define table overlaps between applications

Step 3: Define Table Overlaps Between Applications
In this step, identify and list those tables that are used by more than one application. The
remaining tables do not need to be considered for further segmentation. If you are planning a
distributed database, each application's nonshared tables can be stored in the database for
that application. If you are planning to use Real Application Clusters, these tables would be
associated with the users of just one instance.

Oracle9i Database: Implement Partitioning 6-9

6-9 Copyright © Oracle Corporation, 2002. All rights reserved.

Application Partitioning: Step 4

Phone
Reservations

Table 1

Table 2

Table 3

Table 4

Overlaps

Table 5

Table 6

Overlap
Access

Type

S

I, U

Define access types of overlaps

S Select I Insert U Update

Overlap
Access

Type

S

I, U

Counter
Operations

Table 7

Table 8

Table 9

Table 10

Step 4: Define Access Types of Overlaps
In this step, list the uses of each of the tables that are in the overlap column; that is, tables
that are shared by two or more applications in the system. You can use the terminology
shown in the diagram (S for Select, I for Insert, U for Update, and D for Delete).
This step highlights the tables that are shared by applications only for query purposes. These
tables are easier to maintain in a distributed database even if they are needed in each local
database. The lack of changes means that once they have been replicated to each database,
they do not require ongoing maintenance to keep them synchronized. Similarly, in Real
Application Clusters environments, the read-only tables can be shared easily by the users on
each instance as long as they are separated by tablespace from active tables.

Oracle9i Database: Implement Partitioning 6-10

6-10 Copyright © Oracle Corporation, 2002. All rights reserved.

Application Partitioning: Step 5

Identify transaction volumes of overlaps

Phone
Reservations

Table 1

Table 2

Table 3

Table 4

Overlaps

Table 5

Table 6

Overlap
Access

Type &

Volume

S (10/s)

I (100/s)

U (50/s)

Overlap
Access

Type &

Volume

S (50/s)

I (10/s)

U (90/s)

Counter
Operations

Table 7

Table 8

Table 9

Table 10

Step 5: Identify Transaction Volumes of Overlaps
During this step, use statistics from your current database or estimates of activity for your
scalable database. The purpose is to assign a transaction rate for each of the access types
defined for the overlapping tables in Step 4. Such rate information will help identify which
tables might cause problems with keeping the information synchronized between multiple
databases or multiple instances.

Oracle9i Database: Implement Partitioning 6-11

6-11 Copyright © Oracle Corporation, 2002. All rights reserved.

Application Partitioning: Step 6

• Classify the overlaps
• Ignore nonoverlapping tables
• Ignore select-only overlaps
• Ignore low-frequency overlaps
• Categorize insert-only tables and their indexes
• Categorize mixed access tables and their indexes

Step 6: Classify the Overlaps
In this step, formalize the results of the previous steps. Segregate the various types of tables
based on whether or not they are shared across applications, and then categorize the shared
tables. Identify those tables that are used purely for queries. Define the remaining tables as
low activity or high activity. You can categorize a table as low activity if it is involved in no
more than a few transactions per second for each application, or used primarily for one
application with only a few transactions per minute by the others. The remaining high-
activity tables are then separated by whether the access is primarily to store new rows
(insert-only tables) or whether it involves all DML (inserts, updates, and deletes).
Depending on how you plan to segment your system, you use these results in different ways.
As discussed on the previous pages, nonshared tables and read-only tables are generally not
an issue for either segmentation into multiple tablespaces or segmentation into multiple
instances using Real Application Clusters. Low activity tables are also easy to handle
because these two types of segmentation can manage to keep up with the changes without
incurring performance penalties. However, if you have too many tables, even though no
single one causes overall system degradation, in combination, they can. It is therefore
important to know the size of the load the total number of tables would add to the network
for distributed databases or to locking for Real Application Clusters.
The difference between insert-only and mixed access tables is primarily considered for Real
Application Clusters. There are some extent assignment and locking options that can make
insert-only tables easier to manage across multiple instances than mixed access tables.

Oracle9i Database: Implement Partitioning 6-12

6-12 Copyright © Oracle Corporation, 2002. All rights reserved.

Configuration 1

A: Phone reservations and
counter operations

B: Air fleet management
and sales/marketing

Overlap

Application
Group A

Application
Group B

Database or
Instance 1

Database or
Instance 2

Segment the Database
In Step 6 of the fictional airline application partitioning, the number of transactions on
overlap tables indicated that the two applications, phone reservations and counter operations,
were too high to allow them to be segmented. However, similar analyses of the other
applications showed that the air fleet management and sales and marketing applications
were reasonably independent of the other two applications. This allows us to segment the
database either by building two smaller databases or using two Real Application Clusters
instances.

Oracle9i Database: Implement Partitioning 6-13

6-13 Copyright © Oracle Corporation, 2002. All rights reserved.

User or Departmental Partitioning

• Consider user or departmental partitioning if
application or functional partitioning is not possible.

• One application will be spread across multiple
databases or instances.

• Partition the airline reservation system by
department:
– European markets
– American markets
– Australasian markets

About User/Departmental Partitioning
Sometimes it is not possible to segment your system by application. In this case, consider
some of the other segmenting options. For example, had the airline been unable to use the
configuration shown on the previous slide, it could consider geographic partitioning by
national departments. Here is a breakdown by department, or geography in this case, as part
of the original application breakdown earlier in this lesson.
In the example, the reservation system needs to be segmented. To achieve this, because it is
already one of the major applications, consider user or departmental partitioning.
This approach can be particularly useful when the departments are geographically dispersed
because it is a natural segmentation for distributed databases. Each location uses a local
database for the data that is partitioned by department. The remaining applications, if any,
can be managed from a central database, share one of the departmental databases, or be
replicated so that each local database also contains all of the nonlocal data. Combinations of
these options are also possible.
Oracle Real Application Clusters technology can also benefit from user or departmental
partitioning as long as users are restricted to the instance that is designated to support their
department.

Oracle9i Database: Implement Partitioning 6-14

6-14 Copyright © Oracle Corporation, 2002. All rights reserved.

Configuration 2

A: American
market

B: Non-American
market

All
Overlaps

US
Reservations

Non-US
Reservations

Database or
Instance 1

Database or
Instance 2

Segmentation by Department
The segmentation shown in Configuration 2 is based on a departmental breakdown of the
reservation application. The segments belonging to the other applications become part of the
overlaps and are shared by both of the other segments. If a distributed database approach is
used, these overlaps would be in a separate database, in either of the two local databases, or
they would be replicated in both local databases.
For a Real Application Clusters environment, the tables are stored in the same database. The
overlap segments can cause some interinstance contention and can require a careful strategy
when assigning locks.

Oracle9i Database: Implement Partitioning 6-15

6-15 Copyright © Oracle Corporation, 2002. All rights reserved.

Application of Partition Types

Partitioning methods offered by Oracle:
• Range partitioning
• Hash partitioning
• List partitioning
• Composite partitioning

Oracle9i Database: Implement Partitioning 6-16

6-16 Copyright © Oracle Corporation, 2002. All rights reserved.

Range Partitioning

Range partitioning specifics:
• Useful when rows must be mapped to partitions

based on ranges of column values
• The data has logical ranges into which it can be

distributed, such as months or quarters in a year
• Most efficient when the resulting partitions are of a

similar size

Applying Range Partitioning
Range partitioning is most beneficial when the data has logical ranges into which it can be
distributed. A good example is the SALES table partitioned by sales quarters. Performance
is optimum when the data evenly distributes into the partitions across the specified range. If
the partition size varies greatly, one of the other methods might work better.
Below is a review example of range partitioning:

CREATE TABLE sales
(invoice_number NUMBER,

sale_year INT NOT NULL,
sale_month INT NOT NULL,
sale_day INT NOT NULL)

PARTITION BY RANGE (sale_year, sale_month, sale_day)
(PARTITION sales_q1 VALUES LESS THAN (2001, 04, 01)

TABLESPACE ts01,
PARTITION sales_q2 VALUES LESS THAN (2001, 07, 01)
TABLESPACE ts02,
PARTITION sales_q3 VALUES LESS THAN (2001, 10, 01)
TABLESPACE ts03,
PARTITION sales_q4 VALUES LESS THAN (2002, 01,01)
TABLESPACE ts04);

Oracle9i Database: Implement Partitioning 6-17

6-17 Copyright © Oracle Corporation, 2002. All rights reserved.

Hash Partitioning

Hash partitioning is useful:
• When your data does not easily fit the range

partitioning criteria
• Because it allows unbalanced data to be evenly

distributed among the table’s partitions
• When partition pruning and partition-wise joins on a

partitioning key are important
• Because the data placement is easily tunable.

Partitions can be placed on different partitions,
effectively striping your data.

The Hash Partitioning Method
Hash partitioning is useful when the data does not easily fit the criteria for range partitioning,
but you want to enjoy the performance and manageability benefits provided by partitioning.
Rows are mapped into partitions based on a hash value of the partitioning key. The hash
function works best with a large number of values. Creating and using hash partitions gives
you a highly tunable method of data placement, because you can influence availability and
performance by spreading these evenly sized partitions across I/O devices (striping).
Below is an example of the DDL used to create a hash partitioned table:

CREATE TABLE washer_lots
(id NUMBER,
name VARCHAR2 (60))

PARTITION BY HASH (id)
PARTITIONS 4
STORE IN (lot1, lot2, lot3, lot4);

In the example above, each of the four partitions will be stored in a different segment.

Oracle9i Database: Implement Partitioning 6-18

6-18 Copyright © Oracle Corporation, 2002. All rights reserved.

List Partitioning

• List partitioning allows precise control of how the
rows will map to the partitions.

• Provides a method for unordered or unrelated sets
of data to be easily grouped and organized together.

• List partitioning does not support multicolumn
partition keys.

List Partitioning Applied
List partitioning allows explicit control when mapping rows to partitions. You can specify a
list of unrelated or discrete values for the partitioning column in the description for each
partition. Data that is random or unordered can be easily partitioned using this method. The
example below illustrates this principle. The table SALES_BY REGION is partitioned by
six different lists of states. The only relationship to each other is their proximity to one
another on the map.

CREATE TABLE sales_by_region
(deptno number,
deptname varchar2(20),
quarterly_sales number(10, 2),
state varchar2(2))

PARTITION BY LIST (state)
(PARTITION q1_northwest VALUES ('OR', 'WA', 'ID'),
PARTITION q1_southwest VALUES ('AZ', 'UT', 'NM'),
PARTITION q1_northeast VALUES ('NY', 'VM', 'NJ', 'ME', 'DE'),
PARTITION q1_southeast VALUES ('FL', 'GA', 'AL', 'MS'),
PARTITION q1_northcentral VALUES ('ND', 'SD', 'WI'),
PARTITION q1_southcentral VALUES ('OK', 'TX', 'LA'));

Oracle9i Database: Implement Partitioning 6-19

6-19 Copyright © Oracle Corporation, 2002. All rights reserved.

Composite Partitioning

• Range partitioning is used to partition the data, and
the partitions are subpartitioned using the hash
method.

• Well-suited for historical data
• Data manageability is enhanced because this

method is ideal for striping applications.
• Data is easy to isolate so that operations on the

base table can be parallelized readily.

Applying Composite Partitioning
This method initially partitions the data by range. Each partition is further subpartioned
using the hash method. This approach allows for a finer granularity of control over where
the data will be located physically. Striping large amounts of data over many devices is
more straightforward when composite partitioning is used. Because of the placement of the
data, parallelizing operations can greatly enhance performance. This method is well suited
for data warehouses and large decision support systems. The example below illustrates this
two-part partitioning approach:

CREATE TABLE scubagear
(equipno NUMBER, equipname VARCHAR(32),price NUMBER)
PARTITION BY RANGE (equipno) SUBPARTITION BY HASH(equipname)

SUBPARTITIONS 8 STORE IN (ts1, ts2, ts3, ts4)
(PARTITION p1 VALUES LESS THAN (1000),
PARTITION p2 VALUES LESS THAN (2000),
PARTITION p3 VALUES LESS THAN (MAXVALUE));

In this example, the subpartitions are not explicitly named, so the system will assign them
upon table creation.

Oracle9i Database: Implement Partitioning 6-20

6-20 Copyright © Oracle Corporation, 2002. All rights reserved.

Analyzing Availability Requirements
D

at
ab

as
e

Si
ze

Small

Large

Contracted Uptime

99.5%

95%

90%

0% 100%

Dealing With Very Large Databases
As databases grow in size, the amount of time required to perform certain maintenance and
management activities increases too. In some cases, these activities can exceed the time
allocated for them. Scheduling flexibility suffers.
In many cases, the DBA is required to meet an agreed-to service level agreement to keep the
database available for a given percentage of time. Unfortunately, as the database scales up to
become a very large database (VLDB), more and more components are introduced which
increases the possibility of a failure.
Some of the specific activities that tend to require more time as the database size increases
include:

• Batch job processing
• Archiving and removing old data
• Software enhancements
• Preparing data to be moved to a data warehouse from a data mart
• Download from a data warehouse to data marts
• Data loads or unloads
• Hardware upgrades

Oracle9i Database: Implement Partitioning 6-21

6-21 Copyright © Oracle Corporation, 2002. All rights reserved.

Horizontal and Vertical Table Partitions

Horizontal
Partitioning

Range

1

Range

2

Range

3

Range

4

Vertical Partitioning

Part.
1

Cols.

Part.
2

Cols.

Part.
3

Cols.

Key columns

Minimum
values

Maximum
values

Horizontal Partitioning
When a table is horizontally partitioned, each complete row is stored in a specific partition
based on some predefined characteristic. Most commonly, the value of a column or set of
columns is used to define the boundaries of each partition. The row is stored in a specific
partition based on the value of its key columns or a value derived by hashing this value
according to an internal algorithm.
If you use horizontal partitioning, you can query the whole table with a group function, such
as a UNION, executed implicitly or explicitly, depending on how the partitioning was
defined. If you are managing the partitions manually, you must make sure that rows are only
allowed in their designated partitions, and that updates to the key columns do not result in
rows being placed in the wrong partition.

Vertical Partitioning
A vertically partitioned table is divided so that some columns are in one partition and other
columns are in another partition. In order to see the table as a whole, a common key value
that is unique for each logical row must be stored in each of the partitions.

Oracle9i Database: Implement Partitioning 6-22

Vertical Partitioning (continued)
This allows a standard join operation to connect the row pieces from each partition when
needed. A vertically partitioned table requires more space to store than a horizontally
partitioned table because the key must be stored in every partition repeatedly.
Vertical partitioning is useful when a subset of columns (those related to salary and
compensation in an employee table, for example) is queried and processed by one set of
users while the remaining columns are more generally available.

Oracle9i Database: Implement Partitioning 6-23

6-23 Copyright © Oracle Corporation, 2002. All rights reserved.

Collecting Statistics for
Partitioned Objects

• Statistics can be gathered at various levels:
– Table or Index
– Partition
– Subpartition

• Statistics are considered to be global or nonglobal.
• The DBMS_STATS package can gather global

statistics at any level for tables only.
• Global histograms and global statistics for indexes

cannot be gathered.

Cost-Based Optimization and Partitioned Objects Statistics
Statistics can be gathered by partition or subpartition by using the DBMS_STATS package.
The cost-based optimizer is always used for SQL statement accessing partitioned tables or
indexes.
For partitioned objects, the Oracle server maintains separate sets of statistics: at the object
level, the partition level, and the subpartition level. If a SQL statement accesses only one
fragment, then the Oracle server uses the fragment level’s statistics. If a SQL statement
accesses multiple fragments, the Oracle server uses a single access path for all of these
fragments and uses the statistics from the next higher level. (Here, a fragment can be a
subpartition or a partition of a noncomposite object; subpartition is considered as the lowest
level, partition is the next level, and object is the last.)
DBMS_STATS always collects global statistics (except histograms and indexes) at any
level and never merges them. Global statistics are obtained by considering multiple
fragments as only one.

Oracle9i Database: Implement Partitioning 6-24

6-24 Copyright © Oracle Corporation, 2002. All rights reserved.

EXECUTE DBMS_STATS.GATHER_TABLE_STATS(-
ownname => 'SH', tabname => 'sales', -
partname => 'SALES_Q1_2000', -
granularity => 'partition')

EXECUTE DBMS_STATS.GATHER_INDEX_STATS(-
ownname => 'SH', indname => 'sales_time_bix')

DBMS_STATS Examples

The DBMS_STATS.GATHER_TABLE_STATS Procedure
The following list contains some of the important arguments used by this procedure:
•ownname: Schema of table to analyze
•tabname: Name of table
•partname: Name of partition or subpartition depending on granularity
•method_opt: Equivalent to the FOR clause of the ANALYZE command for histograms
•degree: Degree of parallelism (NULL means use table default value.)
•granularity: Granularity of statistics to collect (only pertinent if the table is

partitioned)
- DEFAULT: Gather table- and partition-level statistics
- SUBPARTITION: Gather subpartition-level statistics
- PARTITION: Gather partition-level statistics
- GLOBAL: Gather object-level statistics
- ALL: Gather all (subpartition-, partition-, and object-level) statistics

•cascade: Gather statistics on the indexes for this table. Index statistics gathering is not
made parallel.

Note: The arguments listed above should be considered a partial list. Refer to the Oracle9i
Supplied PL/SQL Packages Reference for a complete treatment.

Oracle9i Database: Implement Partitioning 6-25

The DBMS_STATS.GATHER_INDEX_STATS Procedure (continued)
This procedure gathers index statistics. It does not execute in parallel. Below are some
important arguments for this procedure:
• ownname: Schema of index to analyze
• indname: Name of index
• partname: Name of partition or subpartition
• estimate_percent: Percentage of rows to estimate (NULL means compute.)
• stattab: User stat table identifier describing where to save the original statistics
• statid: Identifier (optional) to associate with these statistics within stattab
• statown: Schema containing stattab (if different than ownname)

Oracle9i Database: Implement Partitioning 6-26

6-26 Copyright © Oracle Corporation, 2002. All rights reserved.

Parallel Index Scans

• Partitioned indexes are scanned in parallel by
assigning each slave a different partition of the
index to scan.

• The number of parallel query slaves is limited by the
number of partitions.

• No more than one slave per partition is assigned.

Parallelization of Index Scans
Operations against tables with partitioned indexes that cause a full index scan can benefit
from parallelization. The scan operation can be be divided among several parallel slave
processes. No more than one process per index partition can be assigned. Consider the
following select:

select /*+ parallel(sales_idx2,3) */ * from sales \
where name = 'MHARTSTEIN';

In the example above, there are three slaves working on three partitions. Each query slave is
working on individual partitions. The assignment would look like this:

Query_slave_1 => index_partition_1
Query_slave_2 => index_partition_2
Query_slave_3 => index_partition_3

Oracle9i Database: Implement Partitioning 6-27

6-27 Copyright © Oracle Corporation, 2002. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Achieve a practical understanding of partitioning in

practice
• Provide an overview of performance-related issues
• Apply partitioning concepts to real-world scenarios

Oracle9i Database: Implement Partitioning 6-28

6-28 Copyright © Oracle Corporation, 2002. All rights reserved.

Practice Overview:
Partitioning Applications

This practice covers the following topics:
• Perform a rolling window operation
• Converting partitioned views to partitioned tables

 Oracle9i Database: Implement Partitioning A-1

A

Practices

 Oracle9i Database: Implement Partitioning A-2

Lesson 1 Practices

1. Prior to the introduction of the Oracle Partitioning option, manual partitioning was performed
to address large table manageability. Can you list some difficulties that might be encountered
when using manual partitioning?

2. The Oracle Partitioning option offers many advantages to the database administrator when
dealing with very large tables and indexes. Can you list some of these advantages?

3. Please explain the concept and benefits of partition pruning.

4. Can you think of a situation where it would be beneficial to partition the index rather than the
associated table?

 Oracle9i Database: Implement Partitioning A-3

5. List the four partitioning methods and briefly explain each one.

 Oracle9i Database: Implement Partitioning A-4

Practice 2 General Comments

Log in to the DATAMGR schema, using the password DATAMGR for these practices unless
otherwise noted.

Because the creation commands are rather lengthy, it is recommended that you use scripts to
make it easier to re-create the tables with variations.

Practice 2-1 Solution: Create Partitioned Tables of Each Type

1. Create a range-partitioned table. The table contains sales history data, and is partitioned by
quarters. The table uses rolling window operations, where a new quarter is added, an old one
is dropped.

Table Structure: Name: SHIPPED. Columns: PROD_ID, CUST_ID, DATETIME,
UNITS_SOLD, AMOUNT_SOLD, the data type of all columns is NUMBER, except the
DATETIME which is TIMESTAMP WITH LOCAL TIME ZONE.

Partition: Range partion on DATETIME. The partitions for each quarter are to be named
SHP_Qn_yyyy where “n” is 1 to 4 and “yyyy” is the year. The first partition is
SHP_Q1_2002; the last one is SHP_Q2_2003, 6 partitions. Each partition should contain the
appropiate rows based on the DATETIME value.

Storage: The partitions for year 2002 go to tablespace DATA02, the year 2003 into DATA03,
and so on. Initially, you are loading bulk data so all partitions must have PCTFREE 5, except
the last one which needs PCTFREE 20. Other storage attributes can be default values.

Note: To specify a TIMESTAMP literal, the syntax is
 TIMESTAMP 'yyyy-mm-dd hh:mm:ss.ff +hh:mm'
This syntax is fixed, invariant of the NLS settings.

2. Examine the data dictionary views to verify that the partition definitions and storage
attributes are defined correctly.

3. Create a list-partitioned table. The table contains customer addresses that include a country
code, and should be partitioned by continent. This is in anticipation of the need for extensive
data manipulation, which will occur region-by-region.

Table Structure: Name: CUSTS. Columns and datatype: CUST_ID NUMBER,
FIRSTNAME VARCHAR2(20), LASTNAME VARCHAR2(40), ADDRESS
VARCHAR2(20), COUNTRY CHAR(2).

Partition: List partition on COUNTRY.

Partition name (Region) Partition Key (Country codes) Comment
CUST_AM US, CA North America
CUST_SA AR, BR South America
CUST_EU DE, FR, UK, DK, ES, IE, NL Europe
CUST_XX AU, IN, JP, MY, NZ Others

NULL is to be an allowed value.

 Oracle9i Database: Implement Partitioning A-5

Storage: All of the partitions are to be stored in DATA04. Other storage attributes can be
default values.

4. Examine the data dictionary views to verify the partition key values.

5. Create a hash-partitioned table. The hashing is required to ease management operation with
the table.

Table Structure: Name: TEST_RESULT. Columns: TEST_ID NUMBER, BATCH_NO
NUMBER, RESULT_A VARCHAR2(4000), RESULT_B VARCHAR2(4000).

Partition: HASH partion on TEST_ID into 8 partitions. The partition names are irrelevant.

Storage: The partitions are to be evenly spread in tablespaces DATA01, DATA02, and
DATA03. Partition segments must have the initial segment size of 200K.

6. Examine the data dictionary views to verify that the consumed storage amount is correct.
Note: This will differ from the specified initial extent size, if the tablespace is locally
managed with Automatic or Uniform Extent Size, or has had Minimum Extent defined.

7. Create a range-hash composite partitioned table. The SHIPPED table from step 1 above
needs subpartitioning. Because you want to use the DBMS_REDEFENITION package to
migrate, you will create the new table structure as a first step. (The DBMS_REDEFINITION,
which allows for table restructuring while the data, including updates, remains available for
users, will not be covered in this course.)

Table Structure: Table name is SHIPPED_T. Table structure is the same as for SHIPPED.
You can choose to use CREATE TABLE … SELECT AS … WHERE ROWNUM<1 to
copy the structure.

Partition: Range partition is the same as for the SHIPPED table.. Subpartition on columns
CUST_ID and PROD_ID. Four subpartitions per partition. Names are irrelevant. Allow for
large changes in the DATETIME value.

Storage: Subpartition segments to be stored in DATA02 for the year 2002, and DATA03 for
the year 2003, except for the last partition (SHP_Q2_2003), which needs the subpartitions
stored in DATA01 and DATA04.

8. Use the Data dictionary view to determine the tablespace in which the subpartitions are
stored.

9. The TEST_RESULT table needs to be re-created. The result text is too large for
VARCHAR2(4000) and rather than add another RESULT_3 and so on, a CLOB will be used.
Fortunately, the data can be reloaded so that you can drop and recreate the table.

Table structure: As above, but instead of RESULT_1 and RESULT_2, use a column named
RESULTS of type CLOB.

Partition: No change to the table partition specification for TEST_RESULT from earlier.

 Oracle9i Database: Implement Partitioning A-6

Storage: The table partitions are all to be stored in DATA04 without specifying any initial
sizing. The CLOB partitions are to be spread in DATA01, DATA02 and DATA03.

10. Check the tablespace allocation. Hint: All partition names of this table start with ‘H’.

Note: At the end of this practice, you should have four tables in the DATAMGR schema, that
will be used in subsequent practices.

 Oracle9i Database: Implement Partitioning A-7

Practice 2-2 Use the data dictionary to verify the partition structure

1. Create a “plain vanilla” table. Name: VANILLA. Columns: DATA of NUMBER and TEXT
of VARCHAR2(20). No partitioning. Place in tablespace USERS.

2. Display the table name, partition type, and row movement status of the tables created so far.
The nonpartitioned table should be identified as such.

3. Display the table names that have some table partition in tablespace DATA03. Ignore LOB
segments.

4. Display the partition columns used for SHIPPED and SHIPPED_T.

5. Log in to the SH sample schema, password SH.

6. Find which tables are partitioned. Determine how many rows are contained in one of the
partitioned tables, and in one of the table’s partitions.

7. Log in again to the DATAMGR schema.

Note: At the end of this practice, you should have 5 tables in the DATAMGR schema.

 Oracle9i Database: Implement Partitioning A-8

Practice 2-3 See row placement in partitions

1. Insert a few rows into the CUSTS table. For example, 3 rows with a customer residing in the
countries US, CA, and DE, respectively.

2. Select the block number of each row’s rowid. The function
DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid) accomplishes this.

3. Populate the table with data from the SH schema’s CUSTOMER table, using

INSERT INTO custs
 SELECT cust_id, cust_first_name, cust_last_name,
 cust_street_address,country_id
 FROM sh.customers ;

The insert should fail. Select an appropriate subset of the data so the insert succeeds, and
commit the insert.

4. As SYSTEM/MANAGER, examine the DBA_EXTENTS view to determine which blocks
belong to a particular partition segment of the CUSTS table. Compare this to the
DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) returned from a query of some
customers, for example, all customers in CUSTS with CUST_ID less than 200, and verify
that rows are placed in the right partition.

Log back in to the DATAMGR schema after completing this exercise.

 Oracle9i Database: Implement Partitioning A-9

Practice 2-4 Verify Partitioning Pruning Takes Place

1. Create the table PLAN_TABLE by executing the utlxplan standard script. Note: This is
located in ORACLE_HOME/rdbms/admin.

2. Use the EXPLAIN PLAN statement to find the execution plan for:

• a query of the whole of the SHIPPED table
• a query of named partition of the SHIPPED table
• a query of a range of values in the DATETIME column of the SHIPPED table, for

example 1-JUN-2001 to 31-AUG-2001.
• A query of some countries from the CUSTS table, using a IN list, for example COUNTRY

IN ('DE', 'FR', 'UK')

Use the SET STATEMENT_ID clause to distinguish your separate plans, or TRUNCATE the
PLAN_TABLE between each execution plan.

3. View the execution plans. You need only view the columns STATEMENT_ID,
OPERATION, PARTITION_START, and PARTITION_STOP from the table
PLAN_TABLE.

4. Populate the SHIPPED table with sample data from the SH schema’s SALES table.
INSERT INTO shipped
 SELECT prod_id, cust_id, (3*365)+time_id,
 quantity_sold, amount_sold
 FROM sh.sales
 WHERE time_id between '3-JAN-1999' and '30-JUN-2000'
 and cust_id < 10000
 and prod_id < 5000 ;

The command is available in
$HOME/STUDENT/LABS/lab_02_04_populate_shipped.sql.

5. Repeat the execution plan from above for the SHIPPED table. Use a suffix on the
STATEMENT_ID to distinguish the first round from this round. Check the execution plans
now.

6. OPTIONAL

Repeat step 4 from the practice 2-3 to verify correct placement of rows in the SHIPPED table.

Remember to connect back into the DATAMGR schema.

 Oracle9i Database: Implement Partitioning A-10

Practice 3-1 Create most types of partitioned index

1. Create a normal, nonpartitioned index on the partitioned SHIPPED table.

Index: Name SHP_NP_CI. Index the column CUST_ID.

Storage: Default

2. Create a global partitioned index on CUSTS table.

Index: Name CST_GL_LFN. Index on the columns LASTNAME, FIRSTNAME.

Partition: Range partition. Try first the FIRSTNAME column as the partition key. Name the
partitions: C_G_1, C_G_2, C_G_3 with end values ‘A’, ‘G’ and MAXVALUE, respectively.

Storage: Use tablespaces INDX01, INDX02, and INDX03, one for each.

Why will the index creation fail?

Do it with the LASTNAME column as the partition key, but otherwise use the same
definition.

3. Create a local index on the partitioned CUSTS table.

Index: Name CST_LC_FN. Index on the column FIRSTNAME.

Partition: Partition names are irrelevant.

Storage: Use tablespace INDX04.

3b: Could you have specified anything else about the partition type or partition key values?

4: Without referring to the USER_PART_INDEXES view, but possibly by examining other
views, determine if this local index is prefixed or not. Afterwards, check your answer by
selecting from USER_PART_INDEXES.ALIGNMENT.

5. Create a local partitioned index on SHIPPED.

Index: Name: SHP_LC_PI. Normal index on column PROD_ID

Storage: Specify nothing, use all defaults.

6. Where should the local index partitions be stored: in the user default, the table default, or the
current table partitions storage? After considering your answer, check it in the data dictionary.

 Oracle9i Database: Implement Partitioning A-11

7. Create a global index on SHIPPED.

Index: Name SHP_GL_AM. Index on the column AMOUNT.

Partition: Range partition. Only one possible column can be the partition range key. Name
the partitions: S_G_1 and S_G_2, with the partition key value for the first partition at 10.
There is only one workable value for the second partition key value.

Storage: Use tablespaces INDX01 and INDX02.

8. Create a partitioned local bitmap index on SHIPPED.

Index: Name: TST_LB_TI. Type: Bitmap. Index the columns TEST_ID.

Storage: All defaults.

9. A bitmapped global partitioned index is attempted on the hash-partitioned table
TEST_RESULT. Will it succeed, and if not what is the failure reason? Try it.

Index: Name TST_LB_BN. Type: Bitmap: Index on the column BATCH_NO.

Partition: Range partition. Partitions to be named T_G_1 and T_G_2, with the partition key
value for the first partition at 10.

Storage: Use tablespaces INDX01 and INDX02.

10. Use the data dictionary views to verify that your indexes are partitioned as expected. List
partition key values and tablespace used as appropriate.

 Oracle9i Database: Implement Partitioning A-12

Practice 3-2: Specifying partitioned constraints

1. Attempt to add a unique key constraint, CST_LUQ_CI, to the CUSTS table on the CUST_ID
column. The unique index created to support the constraint is to be local partitioned. Why
does this fail?

2. Extend the unique constraint definition so it can be locally partitioned.

3. Examine the partition names and storage location.

4. Create a global partitioned constraint on the hash-partitioned TEST_RESULT table.

Constraint and supporting index: Name: TST_GUQ_BN. Column: BATCH_NO.

Partitioning: Range partitioned on BATCH_NO, partition key values at 100, 200 and
MAXVALUE

Storage: Defaults

 Oracle9i Database: Implement Partitioning A-13

Practice 4-1 Drop and Add table partition, with index maintenance

1. Another season has gone by, and it is time to do the Rolling Window Operation on the
SHIPPED table. Drop the SHP_Q1_2002 partition., without any index maintenance.

2. Examine the index status of all indexes on SHIPPED.

3. Attempt the following insert.
INSERT INTO shipped VALUES
 (2847, 5190, TIMESTAMP '2002-05-05 00:00:00.00', 1, 1234) ;

4. Fix the global index invalid status preventing the insert, and then attempt the insert again.

5. Instead of fixing all partitions of the index in the last error message, only rebuild the S_G_2
partition.

6. Attempt the above insert again. Attempt it also with the value 2.22 in the last column,
AMOUNT. Commit the successful insert.

7. Check if the same partial index errors occur on queries. Query the table twice on AMOUNT
having values 1234 and 2.22, respectively.

8. Fix any remaining indexes so the insert with the value 2.22 also succeeds and commit it.

9. Having dropped and discarded the old data in step 1 above, you must make room for the new
data. Add another partition to the SHIPPED table, continuing the pattern of partition
attributes.

10. Examine index status.

11. Make the following inserts. Note the date or quarter of each insert.

INSERT INTO shipped VALUES
 (2847, 5190, TIMESTAMP '2002-02-02 00:00:00.00', 1, 1234) ;

INSERT INTO shipped VALUES
 (2847, 5190, TIMESTAMP '2003-09-09 00:00:00.00', 1, 1234) ;

INSERT INTO shipped VALUES
 (2847, 5190, TIMESTAMP '2003-11-11 00:00:00.00', 1, 1234) ;

Which inserts should fail? Which might have an undesirable effect? Commit inserts.

 Oracle9i Database: Implement Partitioning A-14

Practice 4-2: Split and merge a partitioned table

1. Examine the table CUSTS. Because the volume of data is too skewed, you decide that the
countries need to be rearranged by partition..

SQL> SELECT country, COUNT(country)
2 FROM custs
3 GROUP BY country ;

 CO COUNT(COUNTRY)
-- --------------
CA 2
US 14172
AR 253
BR 759
DE 8041
DK 353
ES 1986
FR 3751
IE 1958
NL 7563
UK 7475
AU 767
IN 676
JP 593
MY 570
NZ 222

(Hash subpartitioning of list partitions is not supported in Oracle9i) You decide the following:
Move the CA customers from the CUST_NA (North America) to CUST_SA (South
America). This requires splitting and merging. Also, the partition that now contains only US
customers is to be named CUST_USA, and the other American partition will be CUST_AM.

Merge the CUST_NA and CUST_SA into CUST_TMP in the DATA01 tablespace, as a
temporary measure. You want to avoid rebuilding the global partitioned index.

2. Check index status. Hint: all relevant indexes start with CST.

3. Split the CUST_TMP into the desired CUST_USA and CUST_AM, placing them into
tablespaces DATA03 and DATA04, respectively. “Forget” to maintain the global indexes.

4. Check index status. Note the partition key values, and the local index status.

5. The table SHIPPED_T appears to be too crowded in the last range partition, so you increase
the number of subpartitions.

6. Because no storage specification was made, the subpartition ended up in the default
tablespace, which is not the intention. Identify and move the subpartition to DATA04.

 Oracle9i Database: Implement Partitioning A-15

Practice 4-3: Exchange partition and table

1. Another season has passed, and it is time for the next rolling window operation of SHIPPED.
However, an analyst wants to perform an in-depth analysis of the data in the SHP_Q2_2002
partition that you are about to discard, and asks that it be provided as a separate table.

Create a suitable table, called OLD_SHIPPED in the USERS tablespace. Create an index on
OLD_SHIPPED.PROD_ID.

2. Exchange SHP_Q2_2002 and OLD_SHIPPED, with the index.

3. What is the status of the involved data now, specifically:

3a. Which tablespace is the old SHIPPED data, now in the OLD_SHIPPED table, located?

3b. Can the old data be queried through the SHIPPED table?

3c. If you now drop the SHP_Q2_2002 partition, will there be any unexpected side effects??

3d. How might you get the old data out of the production tablespaces (DATAnn)?

4. Check the status of the indexes on both OLD_SHIPPED and SHIPPED.

 Oracle9i Database: Implement Partitioning A-16

Practice 5-1 Export and Import of Partition

This exercise demonstrates the use of Export and Import with partitioned tables and should
be performed as user sh. Export the 1998 Q1 partition. Name the export dump file
sales_q1_1998.dmp and make sure it resides in your home directory. Perform a query
that accesses data in this partition, then truncate the sales_q1_1998 partition. Use
Import to restore the data.

1. Connect as user sh and confirm the SALES table partition names.

2. Perform the export. Make sure the dump file is written to your home directory.

3. Perform a query that accesses data in the SALES_Q1_1998 partition.

4. Truncate the data in the partition SALES_Q1_1998.

5. Verify that the data is gone.

6. Import the data back into the empty partition.

7. Repeat the same query executed previously to verify that the data has been restored.

 Oracle9i Database: Implement Partitioning A-17

Practice 5-2: Load a partition with SQL*Loader

This practice demonstrates how SQL*Loader works with partitioned tables. As user sh, truncate
the SALES_Q1_1998 partition from the SALES table. The partition data will be loaded from the
sh_sales.dat file located in $ORACLE_HOME/demo/schema/sales_history
directory. Using the sh_sales.ctl control file as a model, create your own SQL*Loader
control file in your home directory and reload the SALES_Q1_1998 partition.

1. Truncate the data in the SALES_Q1_1998 partition.

2. Verify that the partition is empty.

3. Make sure you are in your home directory. Copy the sh_sales.ctl file to sales.ctl and
make the necessary edits.

4. Use SQL*Loader to load the data into the partition SALES_Q1_1998 partition.

5. Verify that the data has been successfully loaded.

 Oracle9i Database: Implement Partitioning A-18

Practice 5-3 Partitions in Transportable Tablespaces

This exercise demonstrates self-containment of partitioned tables in transportable tablespaces.
Perform all steps of this exercise as sysdba. Any transportable tablespace candidate must
be self-contained. Perform a self-containment check of the tablespace SAMPLE. Then move
the SALES partition SALES_Q1_1998 to the USERS tablespace. Perform another self-
containment check and observe the differences.

1. Check for self-containment, using the dbms_tts.transport_set_check procedure.

2. View any violations by querying the TRANSPORT_SET_VIOLATIONS table.

3. Give user sh unlimited quota on the USERS tablespace and move the
SALES_Q1_PARTITION:

4. Rerun the self-containment check:

5. Check again for violations.

 Oracle9i Database: Implement Partitioning A-19

Practice 6-1 Rolling Window Operation

This exercise emphasizes the mechanics of performing rolling-window operations. Our
attention will be focused on the fact table SALES in the SH schema. It has now become
necessary to drop the oldest partition, SALES_q1_1998, and add a brand new
SALES_q1_2001 partition. Perform the necessary steps to accomplish this task. Don’t forget
about index maintenance.

1. Connect as SH and query the partitions currently comprising the SALES table.

2. Drop the partition SALES_Q1_1998.

3. Add another partition SALES_Q1_2001 above the partition SALES_Q4_2000. Since that
partition is bounded by MAXVALUE, you must split SALES_Q4_2000.

4. Check to see that the new SALES_Q1_2001 partition has been properly created.

5. The indexes for the fact table SALES must reflect the fact that you have dropped one
partition and added another. Query the USER_PART_INDEXES view to determine the
associated indexes for the table.

6. Identify the index partitions to be rebuilt. Select the index partition_name from the
USER_IND_PARTITIONS view.

7. Rebuild the affected indexes.

 Oracle9i Database: Implement Partitioning A-20

Practice 6-2 Partitioned View to Partitioned Table Conversion

In this exercise, you will create a partition view and then complete the steps required to
convert it to a partitioned table. As user sh, create three standard tables as select * from sales,
partitions SALES_Q1_1999 through SALES_Q1_1999 inclusive. Create a partitioned view
called SALES_PART_VIEW from the three newly created tables. Run the
$HOME/STUDENT/LABS/lab_06_02_view_to_table.sql script to create an
empty partitioned table called SALES_PART_TABLE. Exchange each partition with its
corresponding table.

1. Create tables.

2. Create the partitioned view. Connect as SYSDBA and grant create view to the user sh to
accomplish this.

3. Prepare for the migration by creating the partitioned table SALES_PART_TABLE. You can
create it by running the script
$HOME/STUDENT/LABS/lab_06_02_view_to_table.sql. Please inspect this
script before you execute it. It will be empty in anticipation of the migrated data, so notice
that a segment of two blocks is specified as an initial storage value to act as a placeholder.

4. Use the EXCHANGE PARTITION statement to migrate the tables to the corresponding
partitions.

5. In the real world, you would then drop the original partitioned view and use the old view
name to rename the new partitioned table so that the change would be transparent to the users.

 Oracle9i Database: Implement Partitioning A-21

Practice 6-3 A Very Mixed Table

In this exercise, you will execute the lab_06_03_create_mix.sql script located in the
$HOME/STUDENT/LABS directory to create a table that will demonstrate partitioned table
support of various data types, data organization, constraints, and so on. The table is called
MIX and creates the following columns and datatypes:

NU – NUMBER
CH – CHAR
VC – VARCHAR
CL – CLOB
BL – BLOB
TS - TIMESTAMP

NU and VC are primary keys while CH and VC are unique. The table is range partitioned on
the VC column. The MIX table uses tablespaces DATA01 through DATA04 and INDEX01
through INDEX04 for storage, both primary and overflow. Two local indexes are created,
one on TS and another on VC and TS.

Spend a few moments and inspect the lab_06_03_create_mix.sql script. Pay special
attention to the column datatypes, partitioning statements, storage parameters, constraints,
and index creation.

1. Execute the script $HOME/STUDENT/LABS/ lab_06_03_create_mix.sql.

2. Check table and partition creation.

3. Look at the partitioned columns.

4. Look at the indexes associated with the MIX table.

 Oracle9i Database: Implement Partitioning A-22

 Oracle9i Database: Implement Partitioning B-1

B

Solutions

 Oracle9i Database: Implement Partitioning B-2

Lesson 1 Practices

1. Prior to the introduction of the Oracle Partitioning option, manual partitioning was performed
to address large table manageability. Can you list some difficulties that might be encountered
when using manual partitioning?

a. Optimizing queries and tuning can be more complex.

b. Manageability becomes more complex as each manual table partition has its metadata
definition.

c. Primary keys and unique constraints are almost impossible to implement.

2. The Oracle Partitioning option offers many advantages to the database administrator when
dealing with very large tables and indexes. Can you list some of these advantages?

a. Using Oracle partitioning to divide tables and indexes into smaller partitions improves
availability of data because if one partition is unavailable, other partitions can be used.

b. Unavailable partitions do not affect queries or DML operations on other partitions that
use the same table or index.

c. Each partition can be managed individually, and can function independently of the other
partitions, thus providing a structure that can be better tuned for availability and
performance.

d. Partitioning is transparent to existing applications as are standard DML statements run
against partitioned tables.

e. Partitions can be scanned, updated, inserted, or deleted in parallel, to improve
performance.

f. Partitions can be load-balanced across physical devices.

3. Please explain the concept and benefits of partition pruning.

Depending on the SQL statement, the Oracle server can explicitly recognize partitions and
subpartitions that need to be accessed, and the ones that can be eliminated. This elimination
or optimization is called partition pruning. This can result in substantial improvements in
query performance. Pruning is expressed using a range of partitions, and the relevant
partitions for the query are all the partitions between the first and the last partition of that
range.

 Oracle9i Database: Implement Partitioning B-3

4. Can you think of a situation where it would be beneficial to partition the index rather than the
associated table?

For OLTP applications in which the index is always used, it might be more useful to partition
the index and not the table because the pruning at the index level is the primary obtainable
performance gain.

5. List the four partitioning methods and briefly explain each one.

a. Range Partitioning
Range partitioning uses ranges of column values to map rows to partitions. Partitioning
by range is well suited for historical databases.

b. List Partitioning
List Partitioning uses itemized lists of values of column values for each partition.

c. Hash Partitioning
Hash Partitioning uses a hashing algorithm to map rows to partitions. It is well suited if
queries are made in parallel.

d. Composite Partitioning (Hash subpartition of Range Partition)
Composite Partitioning combines the advantages of range partitioning, (easier
management), with the query benefits of more and smaller partitions by hash
subpartitioning each range partition.

 Oracle9i Database: Implement Partitioning B-4

Practice 2 General Comments

Log in to the DATAMGR schema, using the password DATAMGR for these practices unless
otherwise noted.

Because the creation commands are rather lengthy, it is recommended that you use scripts to
make it easier to re-create the tables with variations.

Practice 2-1 Solution: Create Partitioned Tables of Each Type

1. Create a range-partitioned table. The table contains sales history data, and is partitioned by
quarters. The table uses rolling window operations, where a new quarter is added, an old one
is dropped.

Table Structure: Name: SHIPPED. Columns: PROD_ID, CUST_ID, DATETIME,
UNITS_SOLD, AMOUNT_SOLD, the data type of all columns is NUMBER, except the
DATETIME which is TIMESTAMP WITH LOCAL TIME ZONE.

Partition: Range partition on DATETIME. The partitions for each quarter are to be named
SHP_Qn_yyyy where “n” is 1 to 4 and “yyyy” is the year. The first partition is
SHP_Q1_2002; the last one is SHP_Q2_2003, 6 partitions. Each partition should contain the
appropriate rows based on the DATETIME value.

Storage: The partitions for year 2002 go to tablespace DATA02, the year 2003 into DATA03,
and so on. Initially, you are loading bulk data so all partitions must have PCTFREE 5, except
the last one which needs PCTFREE 20. Other storage attributes can be default values.

Note: To specify a TIMESTAMP literal, the syntax is
 TIMESTAMP 'yyyy-mm-dd hh:mm:ss.ff +hh:mm'
This syntax is fixed, invariant of the NLS settings.

SQL> CREATE TABLE shipped
 2 (prod_id NUMBER
 3 , cust_id NUMBER
 4 , datetime TIMESTAMP WITH LOCAL TIME ZONE
 5 , quantity NUMBER
 6 , amount NUMBER(10,2)
 7) PCTFREE 5
 8 PARTITION BY RANGE (datetime)
 9 (PARTITION SHP_Q1_2002 VALUES LESS THAN
 10 (TIMESTAMP '2002-04-01 00:00:00.00 +00:00')
 11 TABLESPACE data02
 12 , PARTITION SHP_Q2_2002 VALUES LESS THAN
 13 (TIMESTAMP '2002-07-01 00:00:00.00 +00:00')
 14 TABLESPACE data02
 15 , PARTITION SHP_Q3_2002 VALUES LESS THAN
 16 (TIMESTAMP '2002-10-01 00:00:00.00 +00:00')
 17 TABLESPACE data02
 18 , PARTITION SHP_Q4_2002 VALUES LESS THAN
 19 (TIMESTAMP '2003-01-01 00:00:00.00 +00:00')
 20 TABLESPACE data02
 21 , PARTITION SHP_Q1_2003 VALUES LESS THAN

 Oracle9i Database: Implement Partitioning B-5

 22 (TIMESTAMP '2003-04-01 00:00:00.00 +00:00')
 23 TABLESPACE data03
 24 , PARTITION SHP_Q2_2003 VALUES LESS THAN
 25 (TIMESTAMP '2003-07-01 00:00:00.00 +00:00')
 26 TABLESPACE data03 PCTFREE 20
 27)
 28 ;

Table created.

2. Examine the data dictionary views to verify that the partition definitions and storage
attributes are defined correctly.

SQL> SELECT TABLE_NAME, PARTITION_NAME, HIGH_VALUE,
 2 TABLESPACE_NAME, PCT_FREE
 3 FROM USER_TAB_PARTITIONS ;

TABLE_NAME Part.Name HIGH_VALUE TABLESPACE PCT_FREE
---------- ------------------ --------------- ---------- ----------
SHIPPED SHP_Q1_2002 'TIMESTAMP'2002 DATA02 5
 -04-01 00:00:00
 .000000000+00:0
 0 '
SHIPPED SHP_Q2_2002 TIMESTAMP' DATA02 5
SHIPPED SHP_Q3_2002 TIMESTAMP' DATA02 5
SHIPPED SHP_Q4_2002 TIMESTAMP' DATA02 5
SHIPPED SHP_Q1_2003 TIMESTAMP' DATA03 5
SHIPPED SHP_Q2_2003 TIMESTAMP' DATA03 20

The printout is slightly reformatted to fit. The HIGH_VALUE column’s value is only partially
shown after the first record.

3. Create a list-partitioned table. The table contains customer addresses that include a country
code, and should be partitioned by continent. This is in anticipation of the need for extensive
data manipulation, which will occur region-by-region.

Table Structure: Name: CUSTS. Columns and datatype: CUST_ID NUMBER,
FIRSTNAME VARCHAR2(20), LASTNAME VARCHAR2(40), ADDRESS
VARCHAR2(20), COUNTRY CHAR(2).

Partition: List partition on COUNTRY.

Partition name (Region) Partition Key (Country codes) Comment
CUST_AM US, CA North America
CUST_SA AR, BR South America
CUST_EU DE, FR, UK, DK, ES, IE, NL Europe
CUST_XX AU, IN, JP, MY, NZ Others

NULL is to be an allowed value.

Storage: All of the partitions are to be stored in DATA04. Other storage attributes can be
default values.

SQL> CREATE TABLE custs

 Oracle9i Database: Implement Partitioning B-6

 2 (cust_id NUMBER
 3 , firstname VARCHAR2(20)
 4 , lastname VARCHAR2(40)
 5 , address VARCHAR2(40)
 6 , country CHAR(2)
 7) TABLESPACE data04
 8 PARTITION BY LIST (country)
 9 (PARTITION cust_na VALUES ('US', 'CA')
 10 , PARTITION cust_sa VALUES ('AR', 'BR')
 11 , PARTITION cust_eu VALUES ('DE', 'FR', 'UK', 'DK',
 12 'ES', 'IE', 'NL')
 13 , PARTITION cust_xx VALUES ('AU', 'IN', 'JP', 'MY', 'NZ',
 14 NULL)
 15) ;

Table created.

4. Examine the data dictionary views to verify the partition key values.

TABLE_NAME Part.Name HIGH_VALUE TABLESPACE
------------ ------------------ ---------------------- ----------
CUSTS CUST_NA 'US', 'CA' DATA04
CUSTS CUST_SA 'AR', 'BR' DATA04
CUSTS CUST_EU 'DE', 'FR', 'UK', 'DK' DATA04
 , 'ES', 'IE', 'NL'
CUSTS CUST_XX 'AU', 'IN', 'JP', 'MY' DATA04
 , 'NZ', NULL

5. Create a hash-partitioned table. The hashing is required to ease management operation with
the table.

Table Structure: Name: TEST_RESULT. Columns: TEST_ID NUMBER, BATCH_NO
NUMBER, RESULT_A VARCHAR2(4000), RESULT_B VARCHAR2(4000).

Partition: HASH partion on TEST_ID into 8 partitions. The partition names are irrelevant.

Storage: The partitions are to be evenly spread in tablespaces DATA01, DATA02, and
DATA03. Partition segments must have the initial segment size of 200K.

SQL> CREATE TABLE test_result
 2 (test_id NUMBER
 3 , batch_no NUMBER
 4 , result_a VARCHAR2(4000)
 5 , result_b VARCHAR2(4000)
 6) STORAGE (INITIAL 200K)
 7 PARTITION BY HASH (TEST_ID)
 8 PARTITIONS 8
 9 STORE IN (data01, data02, data03)
 10 ;

6. Examine the data dictionary views to verify that the consumed storage amount is correct.
Note: This will differ from the specified initial extent size, if the tablespace is locally
managed with Automatic or Uniform Extent Size, or has had Minimum Extent defined.

 Oracle9i Database: Implement Partitioning B-7

SQL> SELECT SEGMENT_NAME, PARTITION_NAME, BYTES
 2 FROM USER_SEGMENTS
 3 WHERE SEGMENT_NAME='TEST_RESULT' ;

SEGMENT_NAME PARTITION_NAME BYTES
------------------ ------------------ ----------
TEST_RESULT SYS_P786 262144
TEST_RESULT SYS_P787 262144
TEST_RESULT SYS_P788 262144
TEST_RESULT SYS_P789 262144
TEST_RESULT SYS_P790 262144
TEST_RESULT SYS_P791 262144
TEST_RESULT SYS_P792 262144
TEST_RESULT SYS_P793 262144

The system generated names may differ on your output

7. Create a range-hash composite partitioned table. The SHIPPED table from step 1 above
needs subpartitioning. Because you want to use the DBMS_REDEFENITION package to
migrate, you will create the new table structure as a first step. (The DBMS_REDEFINITION,
which allows for table restructuring while the data, including updates, remains available for
users, will not be covered in this course.)

Table Structure: Table name is SHIPPED_T. Table structure is the same as for SHIPPED.
You can choose to use CREATE TABLE … SELECT AS … WHERE ROWNUM<1 to
copy the structure.

Partition: Range partition is the same as for the SHIPPED table.. Subpartition on columns
CUST_ID and PROD_ID. Four subpartitions per partition. Names are irrelevant. Allow for
large changes in the DATETIME value.

Storage: Subpartition segments to be stored in DATA02 for the year 2002, and DATA03 for
the year 2003, except for the last partition (SHP_Q2_2003), which needs the subpartitions
stored in DATA01 and DATA04.

SQL> CREATE TABLE shipped_t
 2 PCTFREE 5
 3 PARTITION BY RANGE (datetime)
 4 SUBPARTITION BY HASH (cust_id, prod_id)
 5 SUBPARTITIONS 4 STORE IN (data02)
 6 (PARTITION SHP_Q1_2002 VALUES LESS THAN
 7 (TIMESTAMP '2002-04-01 00:00:00.00 +00:00')
 8 , PARTITION SHP_Q2_2002 VALUES LESS THAN
 9 (TIMESTAMP '2002-07-01 00:00:00.00 +00:00')
 10 , PARTITION SHP_Q3_2002 VALUES LESS THAN
 11 (TIMESTAMP '2002-10-01 00:00:00.00 +00:00')
 12 , PARTITION SHP_Q4_2002 VALUES LESS THAN
 13 (TIMESTAMP '2003-01-01 00:00:00.00 +00:00')
 14 , PARTITION SHP_Q1_2003 VALUES LESS THAN
 15 (TIMESTAMP '2003-04-01 00:00:00.00 +00:00')
 16 SUBPARTITIONS 4 STORE IN (data03)
 17 , PARTITION SHP_Q2_2003 VALUES LESS THAN
 18 (TIMESTAMP '2003-07-01 00:00:00.00 +00:00')

 Oracle9i Database: Implement Partitioning B-8

 19 SUBPARTITIONS 4 STORE IN (data01, data04)
 20)
 21 ENABLE ROW MOVEMENT
 22 AS SELECT * FROM shipped
 23 WHERE ROWNUM<1
 24 ;

Table created.

Note the ROW MOVEMENT clause on line 18; “allow for large changes in the DATETIME
value”

8. Use the Data dictionary view to determine the tablespace in which the subpartitions are
stored.

SQL> SELECT TABLE_NAME, PARTITION_NAME,
 2 SUBPARTITION_NAME, TABLESPACE_NAME
 3 FROM USER_TAB_SUBPARTITIONS
 4 WHERE TABLE_NAME='SHIPPED_T'
 5 ORDER BY SUBPARTITION_NAME ;

TABLE_NAME Part.Name Sub.P.Name TABLESPACE
---------- ------------------ ------------------ ----------
SHIPPED_T SHP_Q1_2002 SYS_SUBP1258 DATA02
SHIPPED_T SHP_Q1_2002 SYS_SUBP1259 DATA02
SHIPPED_T SHP_Q1_2002 SYS_SUBP1260 DATA02
SHIPPED_T SHP_Q1_2002 SYS_SUBP1261 DATA02
SHIPPED_T SHP_Q2_2002 SYS_SUBP1262 DATA02
SHIPPED_T SHP_Q2_2002 SYS_SUBP1263 DATA02
SHIPPED_T SHP_Q2_2002 SYS_SUBP1264 DATA02
SHIPPED_T SHP_Q2_2002 SYS_SUBP1265 DATA02
SHIPPED_T SHP_Q3_2002 SYS_SUBP1266 DATA02
SHIPPED_T SHP_Q3_2002 SYS_SUBP1267 DATA02
SHIPPED_T SHP_Q3_2002 SYS_SUBP1268 DATA02
SHIPPED_T SHP_Q3_2002 SYS_SUBP1269 DATA02
SHIPPED_T SHP_Q4_2002 SYS_SUBP1270 DATA02
SHIPPED_T SHP_Q4_2002 SYS_SUBP1271 DATA02
SHIPPED_T SHP_Q4_2002 SYS_SUBP1272 DATA02
SHIPPED_T SHP_Q4_2002 SYS_SUBP1273 DATA02
SHIPPED_T SHP_Q1_2003 SYS_SUBP1274 DATA03
SHIPPED_T SHP_Q1_2003 SYS_SUBP1275 DATA03
SHIPPED_T SHP_Q1_2003 SYS_SUBP1276 DATA03
SHIPPED_T SHP_Q1_2003 SYS_SUBP1277 DATA03
SHIPPED_T SHP_Q2_2003 SYS_SUBP1278 DATA01
SHIPPED_T SHP_Q2_2003 SYS_SUBP1279 DATA04
SHIPPED_T SHP_Q2_2003 SYS_SUBP1280 DATA01
SHIPPED_T SHP_Q2_2003 SYS_SUBP1281 DATA04

24 rows selected.

SQL> SELECT SEGMENT_NAME,PARTITION_NAME,
 2 SEGMENT_TYPE,TABLESPACE_NAME
 3 FROM USER_SEGMENTS

 Oracle9i Database: Implement Partitioning B-9

 4 WHERE SEGMENT_NAME='SHIPPED_T'
 5 ORDER BY PARTITION_NAME ;

SEGMENT_NAME Part.Name SEGMENT_TYPE TABLESPACE
------------------ ------------------ ------------------ ----------
SHIPPED_T SYS_SUBP1258 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1259 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1260 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1261 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1262 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1263 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1264 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1265 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1266 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1267 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1268 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1269 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1270 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1271 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1272 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1273 TABLE SUBPARTITION DATA02
SHIPPED_T SYS_SUBP1274 TABLE SUBPARTITION DATA03
SHIPPED_T SYS_SUBP1275 TABLE SUBPARTITION DATA03
SHIPPED_T SYS_SUBP1276 TABLE SUBPARTITION DATA03
SHIPPED_T SYS_SUBP1277 TABLE SUBPARTITION DATA03
SHIPPED_T SYS_SUBP1278 TABLE SUBPARTITION DATA01
SHIPPED_T SYS_SUBP1279 TABLE SUBPARTITION DATA04
SHIPPED_T SYS_SUBP1280 TABLE SUBPARTITION DATA01
SHIPPED_T SYS_SUBP1281 TABLE SUBPARTITION DATA04

24 rows selected.

Either data dictionary table gives the result. Note that the subpartition name is listed in the
PARTITION_NAME column.

9. The TEST_RESULT table needs to be re-created. The result text is too large for
VARCHAR2(4000) and rather than add another RESULT_3 and so on, a CLOB will be used.
Fortunately, the data can be reloaded so that you can drop and recreate the table.

Table structure: As above, but instead of RESULT_1 and RESULT_2, use a column named
RESULTS of type CLOB.

Partition: No change to the table partition specification for TEST_RESULT from earlier.

Storage: The table partitions are all to be stored in DATA04 without specifying any initial
sizing. The CLOB partitions are to be spread in DATA01, DATA02 and DATA03.

 Oracle9i Database: Implement Partitioning B-10

SQL> DROP TABLE test_result ;

Table dropped.

SQL> CREATE TABLE test_result
 2 (test_id NUMBER
 3 , batch_no NUMBER
 4 , results CLOB
 5) TABLESPACE data04
 6 PARTITION BY HASH (TEST_ID)
 7 (PARTITION h_1
 8 LOB (results) STORE AS hl_1 (TABLESPACE data01)
 9 , PARTITION h_2
 10 LOB (results) STORE AS hl_2 (TABLESPACE data02)
 11 , PARTITION h_3
 12 LOB (results) STORE AS hl_3 (TABLESPACE data03)
 13 , PARTITION h_4
 14 LOB (results) STORE AS hl_4 (TABLESPACE data01)
 15 , PARTITION h_5
 16 LOB (results) STORE AS hl_5 (TABLESPACE data02)
 17 , PARTITION h_6
 18 LOB (results) STORE AS hl_6 (TABLESPACE data03)
 19 , PARTITION h_7
 20 LOB (results) STORE AS hl_7 (TABLESPACE data01)
 21 , PARTITION h_8
 22 LOB (results) STORE AS hl_8 (TABLESPACE data02)
 23) ;

Table created.

You cannot specify LOB storage if specifying hash partitions by quantity, instead of named.

 Oracle9i Database: Implement Partitioning B-11

10. Check the tablespace allocation. Hint: All partition names of this table start with ‘H’.

SQL> SELECT SEGMENT_NAME, PARTITION_NAME, SEGMENT_TYPE, TABLESPACE_NAME
 2 FROM USER_SEGMENTS
 3 WHERE PARTITION_NAME LIKE 'H%' ;

SEGMENT_NAME PARTIT SEGMENT_TYPE TABLESPACE
------------------------- ------ ------------------ ----------
TEST_RESULT H_1 TABLE PARTITION DATA04
TEST_RESULT H_2 TABLE PARTITION DATA04
TEST_RESULT H_3 TABLE PARTITION DATA04
TEST_RESULT H_4 TABLE PARTITION DATA04
TEST_RESULT H_5 TABLE PARTITION DATA04
TEST_RESULT H_6 TABLE PARTITION DATA04
TEST_RESULT H_7 TABLE PARTITION DATA04
TEST_RESULT H_8 TABLE PARTITION DATA01
SYS_LOB0000008904C00003$$ HL_1 LOB PARTITION DATA01
SYS_LOB0000008904C00003$$ HL_2 LOB PARTITION DATA02
SYS_LOB0000008904C00003$$ HL_3 LOB PARTITION DATA03
SYS_LOB0000008904C00003$$ HL_4 LOB PARTITION DATA01
SYS_LOB0000008904C00003$$ HL_5 LOB PARTITION DATA02
SYS_LOB0000008904C00003$$ HL_6 LOB PARTITION DATA03
SYS_LOB0000008904C00003$$ HL_7 LOB PARTITION DATA01
SYS_LOB0000008904C00003$$ HL_8 LOB PARTITION DATA02

16 rows selected.

Note: At the end of this practice, you should have four tables in the DATAMGR schema, that
will be used in subsequent practices.

 Oracle9i Database: Implement Partitioning B-12

Practice 2-2 Use the data dictionary to verify the partition structure

1. Create a “plain vanilla” table. Name: VANILLA. Columns: DATA of NUMBER and TEXT
of VARCHAR2(20). No partitioning. Place in tablespace USERS.

SQL> CREATE TABLE vanilla
 2 (DATA NUMBER, TEXT VARCHAR2(20))
 3 TABLESPACE users ;

Table created.

2. Display the table name, partition type, and row movement status of the tables created so far.
The nonpartitioned table should be identified as such.

SQL> SELECT TABLE_NAME, PARTITIONED, ROW_MOVEMENT
 2 FROM USER_TABLES ;

TABLE_NAME PAR ROW_MOVE
------------ --- --------
CUSTS YES DISABLED
SHIPPED YES DISABLED
SHIPPED_T YES ENABLED
TEST_RESULT YES DISABLED
VANILLA NO DISABLED

SQL> SELECT TABLE_NAME, PARTITIONING_TYPE, SUBPARTITIONING_TYPE
 2 FROM USER_PART_TABLES ;

TABLE_NAME PARTITI SUBPART
------------ ------- -------
CUSTS LIST NONE
SHIPPED RANGE NONE
SHIPPED_T RANGE HASH
TEST_RESULT HASH NONE

SQL> REM The same information in one query
SQL> SELECT TABLE_NAME, PARTITIONED,
 2 ROW_MOVEMENT, NVL(PARTITIONING_TYPE,'N/A') PART_TYPE,
 3 NVL(SUBPARTITIONING_TYPE,'N/A') SUBPART_TYPE
 4 FROM USER_PART_TABLES NATURAL RIGHT JOIN USER_TABLES ;

TABLE_NAME PAR ROW_MOVE PART_TY SUBPART
------------ --- -------- ------- -------
VANILLA NO DISABLED N/A N/A
SHIPPED_T YES ENABLED RANGE HASH
CUSTS YES DISABLED LIST NONE
TEST_RESULT YES DISABLED HASH NONE
SHIPPED YES DISABLED RANGE NONE

 Oracle9i Database: Implement Partitioning B-13

3. Display the table names that have some table partition in tablespace DATA03. Ignore LOB
segments.

SQL> SELECT UNIQUE SEGMENT_NAME TABLE_PARTS
 2 FROM USER_SEGMENTS
 3 WHERE SEGMENT_TYPE IN
 4 ('TABLE PARTITION','TABLE SUBPARTITION')
 5 AND TABLESPACE_NAME='DATA03'
 6 ;

TABLE_PARTS
--
SHIPPED
SHIPPED_T

4. Display the partition columns used for SHIPPED and SHIPPED_T.

SQL> SELECT NAME TABLE_NAME, 'PART' PART, COLUMN_NAME,
 2 COLUMN_POSITION "COL.POS."
 3 FROM USER_PART_KEY_COLUMNS
 4 WHERE NAME IN ('SHIPPED','SHIPPED_T')
 5 UNION ALL
 6 SELECT NAME TABLE_NAME, 'SUBP' PART, COLUMN_NAME,
 7 COLUMN_POSITION "COL.POS."
 8 FROM USER_SUBPART_KEY_COLUMNS
 9 WHERE NAME IN ('SHIPPED','SHIPPED_T')
 10 ;

TABLE_NAME PART COLUMN_NAME COL.POS.
------------ ---- --------------- ----------
SHIPPED PART DATETIME 1
SHIPPED_T PART DATETIME 1
SHIPPED_T SUBP CUST_ID 1
SHIPPED_T SUBP PROD_ID 2

5. Log in to the SH sample schema, password SH.

CONNECT SH/SH

Connected.

 Oracle9i Database: Implement Partitioning B-14

6. Find which tables are partitioned. Determine how many rows are contained in one of the
partitioned tables, and in one of the table’s partitions.

SQL> REM The same query as from step 2
SQL> SELECT TABLE_NAME, PARTITIONED,
 2 ROW_MOVEMENT, NVL(PARTITIONING_TYPE,'N/A') PART_TYPE,
 3 NVL(SUBPARTITIONING_TYPE,'N/A') SUBPART_TYPE
 4 FROM USER_PART_TABLES NATURAL RIGHT JOIN USER_TABLES ;

TABLE_NAME PAR ROW_MOVE PART_TY SUBPART
----------------------- --- -------- ------- -------
TIMES NO DISABLED N/A N/A
CHANNELS NO DISABLED N/A N/A
PROMOTIONS NO DISABLED N/A N/A
COUNTRIES NO DISABLED N/A N/A
CUSTOMERS NO DISABLED N/A N/A
PRODUCTS NO DISABLED N/A N/A
CAL_MONTH_SALES_MV NO DISABLED N/A N/A
...
SALES_TRANSACTIONS_EXT NO DISABLED N/A N/A
COSTS YES DISABLED RANGE NONE
SALES YES DISABLED RANGE NONE

SQL> SELECT TABLE_NAME, PARTITION_NAME
 2 FROM USER_TAB_PARTITIONS ;

TABLE_NAME PARTITION_NAME
------------------------------ ---------------------
SALES SALES_Q1_1998
SALES SALES_Q2_1998
SALES SALES_Q3_1998
SALES SALES_Q4_1998
SALES SALES_Q1_1999
...
24 rows selected.

SQL> SELECT COUNT(*) FROM SALES ;

 COUNT(*)

 1016271

SQL> SELECT COUNT(*) FROM SALES PARTITION (SALES_Q1_2000) ;

 COUNT(*)

 104544

 Oracle9i Database: Implement Partitioning B-15

7. Log in again to the DATAMGR schema.

Connect DATAMGR/DATAMGR

Connected.

Note: At the end of this practice, you should have 5 tables in the DATAMGR schema.

 Oracle9i Database: Implement Partitioning B-16

Practice 2-3 See row placement in partitions

1. Insert a few rows into the CUSTS table. For example, 3 rows with a customer residing in the
countries US, CA, and DE, respectively.

SQL> INSERT INTO custs VALUES
 2 (1, 'Alpha', 'Primus', 'First Street', 'CA') ;
SQL> INSERT INTO custs VALUES
 2 (2, 'Beta', 'Secundus','Zweite Strasse', 'DE') ;
SQL> INSERT INTO custs VALUES
 2 (3, 'Gamma', 'Tertius', 'Troisieme Street', 'CA') ;
SQL> COMMIT ;

Commit complete.

2. Select the block number of each row’s rowid. The function
DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid) accomplishes this.

SQL> SELECT DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) BLOCK,
 2 cust_id, country
 3 FROM custs ;

 BLOCK CUST_ID CO
---------- ---------- --
 18 1 CA
 18 3 CA
 34 2 DE

Note the grouping of the rows by the partition. (Your block numbers may vary)

3. Populate the table with data from the SH schema’s CUSTOMER table, using

INSERT INTO custs
 SELECT cust_id, cust_first_name, cust_last_name,
 cust_street_address,country_id
 FROM sh.customers ;

The insert should fail. Select an appropriate subset of the data so the insert succeeds, and
commit the insert.

SQL> INSERT INTO custs
 2 SELECT cust_id, cust_first_name, cust_last_name,
 3 cust_street_address, country_id
 4 FROM sh.customers ;
INSERT INTO custs
 *
ERROR at line 1:
ORA-14400: inserted partition key does not map to any partition

 Oracle9i Database: Implement Partitioning B-17

SQL> INSERT INTO custs
 2 SELECT cust_id, cust_first_name, cust_last_name,
 3 cust_street_address, country_id
 4 FROM sh.customers
 5 WHERE COUNTRY_ID IN ('US', 'CA', 'AR', 'BR',
 6 'DE', 'FR', 'UK', 'DK', 'ES', 'IE', 'NL', 'PL', 'TR',
 7 'AU', 'IN', 'JP', 'MY', 'NZ', NULL) ;

49873 rows created.

SQL> Commit ;

Commit complete.

4. As SYSTEM/MANAGER, examine the DBA_EXTENTS view to determine which blocks
belong to a particular partition segment of the CUSTS table. Compare this to the
DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) returned from a query of some
customers, for example, all customers in CUSTS with CUST_ID less than 200, and verify
that rows are placed in the right partition.

SQL> CONNECT SYSTEM/MANAGER
Connected.
SQL> SELECT DBA_EXTENTS.PARTITION_NAME PARTITION, custs.country,
 2 DBMS_ROWID.ROWID_BLOCK_NUMBER(custs.ROWID) BLOCK, custs.cus
 3 FROM DBA_EXTENTS CROSS JOIN datamgr.custs
 4 WHERE cust_id < 200
 5 AND DBA_EXTENTS.OWNER='DATAMGR'
 6 AND DBA_EXTENTS.SEGMENT_NAME='CUSTS'
 7 AND DBMS_ROWID.ROWID_BLOCK_NUMBER(CUSTS.ROWID)
 8 BETWEEN BLOCK_ID AND BLOCK_ID+BLOCKS-1 ;

PARTITION CO BLOCK CUST_ID
------------------------------ -- ---------- ----------
CUST_NA CA 18 1
CUST_NA CA 18 3
CUST_NA US 18 20
CUST_NA US 18 30
CUST_NA US 18 40
CUST_NA US 18 70
CUST_NA US 18 90
CUST_NA US 18 110
CUST_NA US 18 190
CUST_EU DE 50 2
CUST_EU UK 50 10
CUST_EU FR 50 50
CUST_EU UK 50 60
CUST_EU ES 50 80
CUST_EU ES 50 100
CUST_EU NL 50 120
CUST_EU ES 50 130
CUST_EU ES 50 140
CUST_EU ES 50 150

 Oracle9i Database: Implement Partitioning B-18

CUST_EU ES 50 160
CUST_EU NL 50 170
CUST_EU DE 50 180
22 rows selected.

You can of course take any other “sample” of rows. Your block number may vary

Log back in to the DATAMGR schema after completing this exercise.

SQL> CONNECT DATAMGR/DATAMGR
Connected.

 Oracle9i Database: Implement Partitioning B-19

Practice 2-4 Verify Partitioning Pruning Takes Place

1. Create the table PLAN_TABLE by executing the utlxplan standard script. Note: This is
located in ORACLE_HOME/rdbms/admin.

@?/rdbms/admin/utlxplan

Table created.

2. Use the EXPLAIN PLAN statement to find the execution plan for:

• a query of the whole of the SHIPPED table
• a query of named partition of the SHIPPED table
• a query of a range of values in the DATETIME column of the SHIPPED table, for

example 1-JUN-2001 to 31-AUG-2001.
• A query of some countries from the CUSTS table, using a IN list, for example COUNTRY

IN ('DE', 'FR', 'UK')

Use the SET STATEMENT_ID clause to distinguish your separate plans, or TRUNCATE the
PLAN_TABLE between each execution plan.

SQL> EXPLAIN PLAN SET STATEMENT_ID='1:FULL' FOR
 2 SELECT * FROM shipped ;

Explained.

SQL> EXPLAIN PLAN SET STATEMENT_ID='2:PART' FOR
 2 SELECT * FROM shipped PARTITION (SHP_Q3_2002) ;

Explained.

SQL> EXPLAIN PLAN SET STATEMENT_ID='3:RANGE' FOR
 2 SELECT * FROM shipped
 3 WHERE datetime BETWEEN '1-JUN-2002' AND '31-AUG-2002' ;

Explained.

SQL> EXPLAIN PLAN SET STATEMENT_ID='4:IN-list' FOR
 2 SELECT * FROM custs
 3 WHERE country IN ('DE','FR', 'UK') ;

Explained.

 Oracle9i Database: Implement Partitioning B-20

3. View the execution plans. You need only view the columns STATEMENT_ID,
OPERATION, PARTITION_START, and PARTITION_STOP from the table
PLAN_TABLE.

SQL> SELECT STATEMENT_ID, OPERATION,
 2 PARTITION_START||':'||PARTITION_STOP PARTITIONS
 3 FROM PLAN_TABLE
 4 ORDER BY STATEMENT_ID, ID ;

STATEMENT_ OPERATION PARTITIONS
---------- ---------------------- ------------------------------
1:FULL SELECT STATEMENT :
1:FULL PARTITION RANGE 1:6
1:FULL TABLE ACCESS 1:6
2:PART SELECT STATEMENT :
2:PART TABLE ACCESS 3:3
3:RANGE SELECT STATEMENT :
3:RANGE FILTER :
3:RANGE PARTITION RANGE KEY:KEY
3:RANGE TABLE ACCESS KEY:KEY
4:IN-list SELECT STATEMENT :
4:IN-list PARTITION LIST KEY(INLIST):KEY(INLIST)
4:IN-list TABLE ACCESS KEY(INLIST):KEY(INLIST)

4. Populate the SHIPPED table with sample data from the SH schema’s SALES table.
INSERT INTO shipped
 SELECT prod_id, cust_id, (3*365)+time_id,
 quantity_sold, amount_sold
 FROM sh.sales
 WHERE time_id between '3-JAN-1999' and '30-JUN-2000'
 and cust_id < 10000
 and prod_id < 5000 ;

The command is available in
$HOME/STUDENT/LABS/lab_02_04_populate_shipped.sql.

SQL> INSERT INTO shipped
 2 SELECT prod_id, cust_id, (3*365)+time_id,
 3 quantity_sold, amount_sold
 4 FROM sh.sales
 5 WHERE time_id between '3-JAN-1999' and '30-JUN-2000'
 6 and cust_id < 10000
 7 and prod_id < 5000 ;

47575 rows created.

SQL> Commit ;

Commit complete.

 Oracle9i Database: Implement Partitioning B-21

5. Repeat the execution plan from above for the SHIPPED table. Use a suffix on the
STATEMENT_ID to distinguish the first round from this round. Check the execution plans
now.

SQL> EXPLAIN PLAN SET STATEMENT_ID='1:FULL-2' FOR
 2 SELECT * FROM shipped ;

Explained.

 :

STATEMENT_ OPERATION PARTITIONS
---------- ---------------------- ------------------------------
1:FULL SELECT STATEMENT :
1:FULL PARTITION RANGE 1:6
1:FULL TABLE ACCESS 1:6
1:FULL-2 SELECT STATEMENT :
1:FULL-2 PARTITION RANGE 1:6
1:FULL-2 TABLE ACCESS 1:6
2:PART SELECT STATEMENT :
2:PART TABLE ACCESS 3:3
2:PART-2 SELECT STATEMENT :
2:PART-2 TABLE ACCESS 3:3
3:RANGE SELECT STATEMENT :
3:RANGE FILTER :
3:RANGE PARTITION RANGE KEY:KEY
3:RANGE TABLE ACCESS KEY:KEY
3:RANGE-2 SELECT STATEMENT :
3:RANGE-2 FILTER :
3:RANGE-2 PARTITION RANGE KEY:KEY
3:RANGE-2 TABLE ACCESS KEY:KEY
 :

Note that the pruning takes place without any statistics or data being present.

6. OPTIONAL

Repeat step 4 from the practice 2-3 to verify correct placement of rows in the SHIPPED table.

SQL> REM Must be DBA priviledged to see DBA_EXTENTS
SQL> SELECT DBA_EXTENTS.PARTITION_NAME PARTITION, shipped.datetime,
 2 DBMS_ROWID.ROWID_BLOCK_NUMBER(datamgr.shipped.ROWID) BLOCK,
 3 shipped.cust_id,shipped.prod_id
 4 FROM DBA_EXTENTS CROSS JOIN datamgr.shipped
 5 WHERE cust_id =100 and shipped.prod_id<300
 6 AND DBA_EXTENTS.OWNER='DATAMGR'
 7 AND DBA_EXTENTS.SEGMENT_NAME='SHIPPED'
 8 AND DBMS_ROWID.ROWID_BLOCK_NUMBER(datamgr.shipped.ROWID)
 9 BETWEEN BLOCK_ID AND BLOCK_ID+BLOCKS-1 ;

PARTITION DATETIME BLOCK CUST_ID PROD_ID
------------ --------------- ---------- ---------- ----------
SHP_Q1_2002 08-JAN-02 12.00 21 100 285
SHP_Q1_2002 15-JAN-02 12.00 25 100 285

 Oracle9i Database: Implement Partitioning B-22

SHP_Q1_2002 22-JAN-02 12.00 29 100 285
 : :
SHP_Q2_2002 09-APR-02 12.00 39 100 255
SHP_Q2_2002 16-APR-02 12.00 43 100 255
SHP_Q2_2002 23-APR-02 12.00 48 100 255
SHP_Q2_2002 11-JUN-02 12.00 256 100 25
SHP_Q2_2002 28-APR-03 12.00 250 100 80
SHP_Q2_2002 16-JUN-02 12.00 259 100 25
SHP_Q2_2002 21-JUN-02 12.00 262 100 25
SHP_Q2_2002 26-JUN-02 12.00 265 100 25
SHP_Q3_2002 08-JUL-02 12.00 53 100 240
SHP_Q3_2002 15-JUL-02 12.00 57 100 240
 : :
48 rows selected.

Remember to connect back into the DATAMGR schema.

 Oracle9i Database: Implement Partitioning B-23

Practice 3-1 Create most types of partitioned index

1. Create a normal, nonpartitioned index on the partitioned SHIPPED table.

Index: Name SHP_NP_CI. Index the column CUST_ID.

Storage: Default

SQL> CREATE INDEX shp_np_ci
 2 ON shipped (cust_id) ;

Index created.

2. Create a global partitioned index on CUSTS table.

Index: Name CST_GL_LFN. Index on the columns LASTNAME, FIRSTNAME.

Partition: Range partition. Try first the FIRSTNAME column as the partition key. Name the
partitions: C_G_1, C_G_2, C_G_3 with end values ‘A’, ‘G’ and MAXVALUE, respectively.

Storage: Use tablespaces INDX01, INDX02, and INDX03, one for each.

Why will the index creation fail?

SQL> CREATE INDEX cst_gl_lfn
 2 ON custs(lastname, firstname)
 3 GLOBAL
 4 PARTITION BY RANGE (firstname)
 5 (PARTITION c_g_1 VALUES LESS THAN ('H')
 6 TABLESPACE indx01
 7 , PARTITION c_g_2 VALUES LESS THAN ('Q')
 8 TABLESPACE indx02
 9 , PARTITION c_g_3 VALUES LESS THAN (MAXVALUE)
 10 TABLESPACE indx03
 11) ;
 PARTITION BY RANGE (firstname)
 *
ERROR at line 4:
ORA-14038: GLOBAL partitioned index must be prefixed

Non-prefixed Partitioned Global Indexes are not supported.

 Oracle9i Database: Implement Partitioning B-24

Do it with the LASTNAME column as the partition key, but otherwise use the same
definition.

SQL> CREATE INDEX cst_gl_lfn
 2 ON custs(lastname, firstname)
 3 GLOBAL
 4 PARTITION BY RANGE (lastname)
 5 (PARTITION c_g_1 VALUES LESS THAN ('H')
 6 TABLESPACE indx01
 7 , PARTITION c_g_2 VALUES LESS THAN ('Q')
 8 TABLESPACE indx02
 9 , PARTITION c_g_3 VALUES LESS THAN (MAXVALUE)
 10 TABLESPACE indx03
 11) ;

Index created.

3. Create a local index on the partitioned CUSTS table.

Index: Name CST_LC_FN. Index on the column FIRSTNAME.

Partition: Partition names are irrelevant.

Storage: Use tablespace INDX04.

SQL> CREATE INDEX cst_lc_fn
 2 ON custs (firstname)
 3 TABLESPACE indx04
 4 LOCAL ;

Index created.

3b: Could you have specified anything else about the partition type or partition key values?

Answer: No. A local index follows the partitioning type and key values of the table. You can
specify partition names and storage attributes.

4: Without referring to the USER_PART_INDEXES view, but possibly by examining other
views, determine if this local index is prefixed or not. Afterwards, check your answer by
selecting from USER_PART_INDEXES.ALIGNMENT.

Answer: Examining the partition key definition, to determine if it is the same as the index key
(or the leading part thereof).

 Oracle9i Database: Implement Partitioning B-25

SQL> SELECT NAME, COLUMN_NAME, OBJECT_TYPE,
 2 COLUMN_POSITION "COL.POS."
 3 FROM USER_PART_KEY_COLUMNS
 4 WHERE NAME='CST_LC_FN' ;

NAME COLUMN_NAME OBJECT_TYPE COL.POS.
------------------------------ --------------- ----------- ----------
CST_LC_FN COUNTRY INDEX 1

SQL> SELECT INDEX_NAME, TABLE_NAME, COLUMN_NAME, COLUMN_POSITION
 2 FROM USER_IND_COLUMNS
 3 WHERE INDEX_NAME='CST_LC_FN' ;

INDEX_NAME TABLE_NAME COLUMN_NAME ColPos
---------------- ------------ --------------- ------
CST_LC_FN CUSTS FIRSTNAME 1

SQL> SELECT INDEX_NAME, ALIGNMENT from USER_PART_INDEXES
 2 WHERE INDEX_NAME='CST_LC_FN' ;

INDEX_NAME ALIGNMENT
---------------- ------------
CST_LC_FN NON_PREFIXED

5. Create a local partitioned index on SHIPPED.

Index: Name: SHP_LC_PI. Normal index on column PROD_ID

Storage: Specify nothing, use all defaults.

SQL> CREATE INDEX shp_lc_pi
 2 ON shipped (prod_id)
 3 LOCAL ;

Index created.

 Oracle9i Database: Implement Partitioning B-26

6. Where should the local index partitions be stored: in the user default, the table default, or the
current table partitions storage? After considering your answer, check it in the data dictionary.

SQL> SELECT INDEX_NAME, PARTITION_NAME, PARTITION_POSITION,
 2 HIGH_VALUE, STATUS, TABLESPACE_NAME
 3 FROM USER_IND_PARTITIONS
 4 WHERE INDEX_NAME='SHP_LC_PI' ;

INDEX_NAME Part.Name P.Pos HIGH_VALUE STATUS TABLESPACE
---------------- ------------------ ----- ---------- -------- ----------
SHP_LC_PI SHP_Q1_2002 1 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q2_2002 2 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q3_2002 3 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q4_2002 4 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q1_2003 5 TIMESTAMP' USABLE DATA03
SHP_LC_PI SHP_Q2_2003 6 TIMESTAMP' USABLE DATA03

Answer: The third option; Each local index partition has the same storage attributes as its
corresponding table partition.

7. Create a global index on SHIPPED.

Index: Name SHP_GL_AM. Index on the column AMOUNT.

Partition: Range partition. Only one possible column can be the partition range key. Name
the partitions: S_G_1 and S_G_2, with the partition key value for the first partition at 10.
There is only one workable value for the second partition key value.

Storage: Use tablespaces INDX01 and INDX02.

SQL> CREATE INDEX shp_gl_am
 2 ON shipped (amount)
 3 GLOBAL
 4 PARTITION BY RANGE (amount)
 5 (PARTITION s_g_1 VALUES LESS THAN (10)
 6 TABLESPACE indx01
 7 , PARTITION s_g_2 VALUES LESS THAN (MAXVALUE)
 8 TABLESPACE indx02
 9) ;

Index created.

 Oracle9i Database: Implement Partitioning B-27

8. Create a partitioned local bitmap index on SHIPPED.

Index: Name: TST_LB_TI. Type: Bitmap. Index the columns TEST_ID.

Storage: All defaults.

SQL> CREATE BITMAP INDEX tst_lb_ti
 2 ON test_result (test_id)
 3 LOCAL ;

Index created.

9. A bitmapped global partitioned index is attempted on the hash-partitioned table
TEST_RESULT. Will it succeed, and if not what is the failure reason? Try it.

Index: Name TST_LB_BN. Type: Bitmap: Index on the column BATCH_NO.

Partition: Range partition. Partitions to be named T_G_1 and T_G_2, with the partition key
value for the first partition at 10.

Storage: Use tablespaces INDX01 and INDX02.

SQL> CREATE BITMAP INDEX tst_lb_bn
 2 ON test_result (batch_no)
 3 GLOBAL
 4 PARTITION BY RANGE (batch_no)
 5 (PARTITION t_g_1 VALUES LESS THAN (10)
 6 TABLESPACE indx03
 7 , PARTITION t_g_2 VALUES LESS THAN (MAXVALUE)
 8 TABLESPACE indx04
 9) ;
CREATE BITMAP INDEX tst_lb_bn
*
ERROR at line 1:
ORA-25113: GLOBAL may not be used with a bitmap index

Answer: Bitmap indexes can only be locally partitioned. You can create a B*tree global
range partitioned index on a hash partitioned table.

10. Use the data dictionary views to verify that your indexes are partitioned as expected. List
partition key values and tablespace used as appropriate.

SQL> REM All Indexes
SQL> SELECT INDEX_NAME, INDEX_TYPE, UNIQUENESS, STATUS,
 2 TABLESPACE_NAME, PARTITIONED
 3 FROM USER_INDEXES ;

INDEX_NAME INDEX_TYPE Uq. STATUS TABLESPACE PAR
---------------- --------------- --- -------- ---------- ---
CST_GL_LFN NORMAL NON N/A YES
CST_LC_FN NORMAL NON N/A YES
SHP_GL_AM NORMAL NON N/A YES
SHP_LC_PI NORMAL NON N/A YES

 Oracle9i Database: Implement Partitioning B-28

SHP_NP_CI NORMAL NON VALID USERS NO
SYS_IL0000010411 LOB UNI N/A YES
C00003$$
TST_LB_TI BITMAP NON N/A YES

7 rows selected.

SQL> REM Partitioned Indexes
SQL> SELECT INDEX_NAME, PARTITIONING_TYPE,
 2 LOCALITY LOC, ALIGNMENT, PARTITION_COUNT,
 3 PARTITIONING_KEY_COUNT, DEF_TABLESPACE_NAME
 4 FROM USER_PART_INDEXES ;

INDEX_NAME PARTITI LOC ALIGNMENT P.Cnt P.K.# Def.TS Nam
---------------- ------- ------ ------------ ------ ------ ----------
CST_GL_LFN RANGE GLOBAL PREFIXED 3 1 USERS
CST_LC_FN LIST LOCAL NON_PREFIXED 4 1 INDX04
SHP_GL_AM RANGE GLOBAL PREFIXED 2 1 USERS
SHP_LC_PI RANGE LOCAL NON_PREFIXED 6 1
SYS_IL0000010411 HASH LOCAL NON_PREFIXED 8 1
C00003$$
TST_LB_TI HASH LOCAL PREFIXED 8 1

6 rows selected.

SQL> REM Index Partitions
SQL> SELECT INDEX_NAME, PARTITION_NAME, PARTITION_POSITION,
 2 HIGH_VALUE, STATUS, TABLESPACE_NAME
 3 FROM USER_IND_PARTITIONS ;

INDEX_NAME Part.Name P.Pos HIGH_VALUE STATUS TABLESPACE
---------------- ------------------ ----- ---------- -------- ----------
SYS_IL0000010411 SYS_IL_P1503 1 USABLE DATA01
C00003$$
 : :
SYS_IL00000104.. SYS_IL_P1510 8 USABLE DATA02
C00003$$
CST_GL_LFN C_G_1 1 'H' USABLE INDX01
CST_GL_LFN C_G_2 2 'Q' USABLE INDX02
CST_GL_LFN C_G_3 3 MAXVALUE USABLE INDX03
CST_LC_FN CUST_NA 1 'US', 'CA' USABLE INDX04
CST_LC_FN CUST_SA 2 'AR', 'BR' USABLE INDX04
CST_LC_FN CUST_EU 3 'DE', 'FR' USABLE INDX04
CST_LC_FN CUST_XX 4 'AU', 'IN' USABLE INDX04
SHP_LC_PI SHP_Q1_2002 1 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q2_2002 2 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q3_2002 3 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q4_2002 4 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q1_2003 5 TIMESTAMP' USABLE DATA03
SHP_LC_PI SHP_Q2_2003 6 TIMESTAMP' USABLE DATA03
SHP_GL_AM S_G_1 1 10 USABLE INDX01
SHP_GL_AM S_G_2 2 MAXVALUE USABLE INDX02
TST_LB_TI H_1 1 USABLE DATA01

 Oracle9i Database: Implement Partitioning B-29

TST_LB_TI H_2 2 USABLE DATA01
TST_LB_TI H_3 3 USABLE DATA01
 : :

31 rows selected.

SQL> REM Index Partition Keys
SQL> SELECT NAME INDEX_NAME, COLUMN_NAME,
 2 COLUMN_POSITION
 3 FROM USER_PART_KEY_COLUMNS
 4 WHERE TRIM(OBJECT_TYPE)!='TABLE'
 5 ;

INDEX_NAME COLUMN_NAME ColPos
---------------- --------------- ------
CST_GL_LFN LASTNAME 1
CST_LC_FN COUNTRY 1
SHP_GL_AM AMOUNT 1
SHP_LC_PI DATETIME 1
SYS_IL0000010411 TEST_ID 1
C00003$$
TST_LB_TI TEST_ID 1

6 rows selected.

SQL> REM Index Key
SQL> SELECT INDEX_NAME, TABLE_NAME, COLUMN_NAME, COLUMN_POSITION
 2 FROM USER_IND_COLUMNS ;

INDEX_NAME TABLE_NAME COLUMN_NAME ColPos
---------------- ------------ --------------- ------
CST_GL_LFN CUSTS LASTNAME 1
CST_GL_LFN CUSTS FIRSTNAME 2
CST_LC_FN CUSTS FIRSTNAME 1
SHP_NP_CI SHIPPED CUST_ID 1
SHP_LC_PI SHIPPED PROD_ID 1
SHP_GL_AM SHIPPED AMOUNT 1
TST_LB_TI TEST_RESULT TEST_ID 1

7 rows selected.

Output slightly reformatted

 Oracle9i Database: Implement Partitioning B-30

Practice 3-2: Specifying partitioned constraints

1. Attempt to add a unique key constraint, CST_LUQ_CI, to the CUSTS table on the CUST_ID
column. The unique index created to support the constraint is to be local partitioned. Why
does this fail?

SQL> ALTER TABLE custs ADD
 2 CONSTRAINT cst_luq_ci UNIQUE (cust_id)
 3 USING INDEX LOCAL ;
ALTER TABLE custs ADD
*
ERROR at line 1:
ORA-14039: partitioning columns must form a subset of key columns of a
UNIQUE index

Answer: A local unique index must contain the partition columns (but not necessarily
prefixed).

2. Extend the unique constraint definition so it can be locally partitioned.

SQL> ALTER TABLE custs ADD
 2 CONSTRAINT cst_luq_ci UNIQUE (cust_id, country)
 3 USING INDEX LOCAL ;

Table altered.

Note that the index is not prefixed, it merely contains the partitioning columns.

3. Examine the partition names and storage location.

SQL> SELECT PARTITION_NAME, TABLESPACE_NAME
 2 FROM USER_IND_PARTITIONS
 3 WHERE INDEX_NAME='CST_LUQ_CI' ;

Part.Name TABLESPACE
------------------ ----------
CUST_EU DATA04
CUST_XX DATA04
CUST_NA DATA04
CUST_SA DATA04

 Oracle9i Database: Implement Partitioning B-31

4. Create a global partitioned constraint on the hash-partitioned TEST_RESULT table.

Constraint and supporting index: Name: TST_GUQ_BN. Column: BATCH_NO.

Partitioning: Range partitioned on BATCH_NO, partition key values at 100, 200 and
MAXVALUE

Storage: Defaults

SQL> ALTER TABLE test_result ADD
 2 CONSTRAINT tst_guq_bn UNIQUE (batch_no)
 3 USING INDEX
 4 TABLESPACE USERS GLOBAL
 5 PARTITION BY RANGE (batch_no)
 6 (PARTITION t_g_1 VALUES LESS THAN (100)
 7 , PARTITION t_g_2 VALUES LESS THAN (200)
 8 , PARTITION t_g_3 VALUES LESS THAN (MAXVALUE)
 9) ;

Table altered.

 Oracle9i Database: Implement Partitioning B-32

Practice 4-1 Drop and Add table partition, with index maintenance

1. Another season has gone by, and it is time to do the Rolling Window Operation on the
SHIPPED table. Drop the SHP_Q1_2002 partition, without any index maintenance.

SQL> ALTER TABLE shipped DROP PARTITION shp_q1_2002 ;

Table altered.

2. Examine the index status of all indexes on SHIPPED.

SQL> SELECT INDEX_NAME, INDEX_TYPE, UNIQUENESS, STATUS,
 2 TABLESPACE_NAME, PARTITIONED
 3 FROM USER_INDEXES
 4 WHERE TABLE_NAME='SHIPPED' ;

INDEX_NAME INDEX_TYPE Uq. STATUS TABLESPACE PAR
---------------- --------------- --- -------- ---------- ---
SHP_GL_AM NORMAL NON N/A YES
SHP_LC_PI NORMAL NON N/A YES
SHP_NP_CI NORMAL NON UNUSABLE USERS NO

SQL> SELECT INDEX_NAME, PARTITION_NAME,
 2 HIGH_VALUE, STATUS, TABLESPACE_NAME
 3 FROM USER_IND_PARTITIONS
 4 WHERE INDEX_NAME LIKE 'SHP%' ;

INDEX_NAME Part.Name HIGH_VALUE STATUS TABLESPACE
---------------- ------------------ ---------- -------- ----------
SHP_LC_PI SHP_Q2_2002 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q3_2002 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q4_2002 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q1_2003 TIMESTAMP' USABLE DATA03
SHP_LC_PI SHP_Q2_2003 TIMESTAMP' USABLE DATA03
SHP_GL_AM S_G_1 10 UNUSABLE INDX01
SHP_GL_AM S_G_2 MAXVALUE UNUSABLE INDX02

3. Attempt the following insert.
INSERT INTO shipped VALUES
 (2847, 5190, TIMESTAMP '2002-05-05 00:00:00.00', 1, 1234) ;

SQL> INSERT INTO shipped VALUES
 2 (2847, 5190, TIMESTAMP '2002-05-05 00:00:00.00', 1, 1234) ;
INSERT INTO shipped VALUES
*
ERROR at line 1:
ORA-01502: index 'DATAMGR.SHP_NP_CI' or partition of such index is in
unusable state

 Oracle9i Database: Implement Partitioning B-33

4. Fix the global index invalid status preventing the insert, and then attempt the insert again.

SQL> ALTER INDEX shp_np_ci REBUILD ;

Index altered.

SQL> INSERT INTO shipped VALUES
 2 (2847, 5190, TIMESTAMP '2002-05-05 00:00:00.00', 1, 1234) ;
INSERT INTO shipped VALUES
*
ERROR at line 1:
ORA-01502: index 'DATAMGR.SHP_GL_AM' or partition of such index is in
unusable state

5. Instead of fixing all partitions of the index in the last error message, only rebuild the S_G_2
partition.

SQL> ALTER INDEX shp_gl_am REBUILD ;
ALTER INDEX shp_gl_am REBUILD
 *
ERROR at line 1:
ORA-14086: a partitioned index may not be rebuilt as a whole

A global partitioned index must be rebuilt one partition at a time.

SQL> ALTER INDEX shp_gl_am REBUILD PARTITION s_g_2 ;

Index altered.

6. Attempt the above insert again. Attempt it also with the value 2.22 in the last column,
AMOUNT. Commit the successful insert.

SQL> INSERT INTO shipped VALUES
 2 (2847, 5190, TIMESTAMP '2002-05-05 00:00:00.00', 1, 2.22) ;
INSERT INTO shipped VALUES
*
ERROR at line 1:
ORA-01502: index 'DATAMGR.SHP_GL_AM' or partition of such index is in
unusable state

SQL> INSERT INTO shipped VALUES
 2 (2847, 5190, TIMESTAMP '2002-05-05 00:00:00.00', 1, 1234) ;

1 row created.

SQL> COMMIT ;

Commit complete.

 Oracle9i Database: Implement Partitioning B-34

7. Check if the same partial index errors occur on queries. Query the table twice on AMOUNT
having values 1234 and 2.22, respectively.

SQL> SELECT * FROM SHIPPED WHERE AMOUNT=1234 ;

 PROD_ID CUST_ID DATETIME QUANTITY AMOUNT
---------- ---------- ----------------- ----------- ------------
 2847 5190 05-MAY-02 00.00.. 1 1234

SQL> SELECT * FROM SHIPPED WHERE AMOUNT=2.22 ;
SELECT * FROM SHIPPED WHERE AMOUNT=2.22
*
ERROR at line 1:
ORA-01502: index 'DATAMGR.SHP_GL_AM' or partition of such index is in
unusable state

Note that no tables or indexes have been analyzed.

8. Fix any remaining indexes so the insert with the value 2.22 also succeeds and commit it.

SQL> ALTER INDEX shp_gl_am REBUILD PARTITION s_g_1 ;

Index altered.

SQL> INSERT INTO shipped VALUES
 2 (2847, 5190, TIMESTAMP '2002-05-05 00:00:00.00', 1, 2.22) ;

1 row created.

SQL> COMMIT ;

Commit complete.

9. Having dropped and discarded the old data in step 1 above, you must make room for the new
data. Add another partition to the SHIPPED table, continuing the pattern of partition
attributes.

SQL> ALTER TABLE shipped ADD
 2 PARTITION shp_q3_2003 VALUES LESS THAN
 3 (TIMESTAMP '2003-10-01 00:00:00.00 +00:00')
 4 TABLESPACE data03 ;

Table altered.

 Oracle9i Database: Implement Partitioning B-35

10. Examine index status.

SQL> SELECT INDEX_NAME, INDEX_TYPE, UNIQUENESS, STATUS,
 2 TABLESPACE_NAME, PARTITIONED
 3 FROM USER_INDEXES
 4 WHERE TABLE_NAME='SHIPPED' ;

INDEX_NAME INDEX_TYPE Uq. STATUS TABLESPACE PAR
---------------- --------------- --- -------- ---------- ---
SHP_GL_AM NORMAL NON N/A YES
SHP_LC_PI NORMAL NON N/A YES
SHP_NP_CI NORMAL NON VALID USERS NO

SQL> SELECT INDEX_NAME, PARTITION_NAME,
 2 HIGH_VALUE, STATUS, TABLESPACE_NAME
 3 FROM USER_IND_PARTITIONS
 4 WHERE INDEX_NAME LIKE 'SHP%' ;

INDEX_NAME Part.Name HIGH_VALUE STATUS TABLESPACE
---------------- ------------------ ---------- -------- ----------
SHP_LC_PI SHP_Q3_2003 TIMESTAMP' USABLE DATA03
SHP_LC_PI SHP_Q2_2002 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q3_2002 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q4_2002 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q1_2003 TIMESTAMP' USABLE DATA03
SHP_LC_PI SHP_Q2_2003 TIMESTAMP' USABLE DATA03
SHP_GL_AM S_G_1 10 USABLE INDX01
SHP_GL_AM S_G_2 MAXVALUE USABLE INDX02

11. Make the following inserts. Note the date or quarter of each insert.

INSERT INTO shipped VALUES
 (2847, 5190, TIMESTAMP '2002-02-02 00:00:00.00', 1, 1234) ;

INSERT INTO shipped VALUES
 (2847, 5190, TIMESTAMP '2003-09-09 00:00:00.00', 1, 1234) ;

INSERT INTO shipped VALUES
 (2847, 5190, TIMESTAMP '2003-11-11 00:00:00.00', 1, 1234) ;

Which inserts should fail? Which might have an undesirable effect? Commit inserts.

SQL> INSERT INTO shipped VALUES
 2 (2847, 5190, TIMESTAMP '2002-02-02 00:00:00.00', 1, 1234) ;

1 row created.

This belongs to the dropped partition. Adding a check constraint to the table would prevent it.

 Oracle9i Database: Implement Partitioning B-36

SQL> INSERT INTO shipped VALUES
 2 (2847, 5190, TIMESTAMP '2003-09-09 00:00:00.00', 1, 1234) ;

1 row created.

This makes use of the new partition, and is as expected.

SQL> INSERT INTO shipped VALUES
 2 (2847, 5190, TIMESTAMP '2003-11-11 00:00:00.00', 1, 1234) ;
INSERT INTO shipped VALUES
 *
ERROR at line 1:
ORA-14400: inserted partition key does not map to any partition

This is an expected failure, the date is too far in the future.

SQL> COMMIT ;

Commit complete.

 Oracle9i Database: Implement Partitioning B-37

Practice 4-2: Split and merge a partitioned table

1. Examine the table CUSTS. Because the volume of data is too skewed, you decide that the
countries need to be rearranged by partition.

SQL> SELECT country, COUNT(country)
2 FROM custs
3 GROUP BY country ;

 CO COUNT(COUNTRY)
-- --------------
CA 2
US 14172
AR 253
BR 759
DE 8041
DK 353
ES 1986
FR 3751
IE 1958
NL 7563
UK 7475
AU 767
IN 676
JP 593
MY 570
NZ 222

(Hash subpartitioning of list partitions is not supported in Oracle9i) You decide the following:
Move the CA customers from the CUST_NA (North America) to CUST_SA (South
America). This requires splitting and merging. Also, the partition that now contains only US
customers is to be named CUST_USA, and the other American partition will be CUST_AM.

Merge the CUST_NA and CUST_SA into CUST_TMP in the DATA01 tablespace, as a
temporary measure. You want to avoid rebuilding the global partitioned index.

SQL> ALTER TABLE custs MERGE
 2 PARTITIONS cust_na, cust_sa
 3 INTO PARTITION cust_tmp TABLESPACE data01
 4 UPDATE GLOBAL INDEXES ;

Table altered.

 Oracle9i Database: Implement Partitioning B-38

2. Check index status. Hint: all relevant indexes start with CST.

SQL> SELECT INDEX_NAME, PARTITION_NAME,
 2 HIGH_VALUE, STATUS, TABLESPACE_NAME
 3 FROM USER_IND_PARTITIONS
 4 WHERE INDEX_NAME LIKE 'CST%' ;

INDEX_NAME Part.Name HIGH_VALUE STATUS TABLESPACE
------------ ------------ ---------------------- -------- ----------
CST_LUQ_CI CUST_EU 'DE', 'FR', 'UK', 'DK' USABLE DATA04
 , 'ES', 'IE', 'NL'
CST_LUQ_CI CUST_XX 'AU', 'IN', 'JP', 'MY' USABLE DATA04
 , 'NZ', NULL
CST_LUQ_CI CUST_TMP 'US', 'CA', 'AR', 'BR' UNUSABLE DATA01
CST_LC_FN CUST_TMP 'US', 'CA', 'AR', 'BR' UNUSABLE INDX04
CST_GL_LFN C_G_1 'H' USABLE INDX01
CST_GL_LFN C_G_2 'Q' USABLE INDX02
CST_GL_LFN C_G_3 MAXVALUE USABLE INDX03
CST_LC_FN CUST_EU 'DE', 'FR', 'UK', 'DK' USABLE INDX04
 , 'ES', 'IE', 'NL'
CST_LC_FN CUST_XX 'AU', 'IN', 'JP', 'MY' USABLE INDX04
 , 'NZ', NULL

3. Split the CUST_TMP into the desired CUST_USA and CUST_AM, placing them into
tablespaces DATA03 and DATA04, respectively. “Forget” to maintain the global indexes.

SQL> ALTER TABLE custs SPLIT
 2 PARTITION cust_tmp VALUES ('US') INTO
 3 (PARTITION cust_usa TABLESPACE data03
 4 , PARTITION cust_am TABLESPACE data04)
 5 ;

Table altered.

 Oracle9i Database: Implement Partitioning B-39

4. Check index status. Note the partition key values, and the local index status.

SQL> SELECT INDEX_NAME, PARTITION_NAME,
 2 HIGH_VALUE, STATUS, TABLESPACE_NAME
 3 FROM USER_IND_PARTITIONS
 4 WHERE INDEX_NAME LIKE 'CST%' ;

INDEX_NAME Part.Name HIGH_VALUE STATUS TABLESPACE
------------ ------------ ---------------------- -------- ----------
CST_LUQ_CI CUST_EU 'DE', 'FR', 'UK', 'DK' USABLE DATA04
 , 'ES', 'IE', 'NL'
CST_LUQ_CI CUST_XX 'AU', 'IN', 'JP', 'MY' USABLE DATA04
 , 'NZ', NULL
CST_LUQ_CI CUST_USA 'US' UNUSABLE DATA03
CST_LUQ_CI CUST_AM 'CA', 'AR', 'BR' UNUSABLE DATA04
CST_LC_FN CUST_USA 'US' UNUSABLE INDX04
CST_LC_FN CUST_AM 'CA', 'AR', 'BR' UNUSABLE INDX04
CST_GL_LFN C_G_1 'H' UNUSABLE INDX01
CST_GL_LFN C_G_2 'Q' UNUSABLE INDX02
CST_GL_LFN C_G_3 MAXVALUE UNUSABLE INDX03
CST_LC_FN CUST_EU 'DE', 'FR', 'UK', 'DK' USABLE INDX04
 , 'ES', 'IE', 'NL'
CST_LC_FN CUST_XX 'AU', 'IN', 'JP', 'MY' USABLE INDX04
 , 'NZ', NULL

5. The table SHIPPED_T appears to be too crowded in the last range partition, so you increase
the number of subpartitions.

SQL> ALTER TABLE shipped_t MODIFY
 2 PARTITION shp_q2_2003 ADD SUBPARTITION ;

Table altered.

This command is repeated for the number of subpartitions you want to add.

6. Because no storage specification was made, the subpartition ended up in the default
tablespace, which is not the intention. Identify and move the subpartition to DATA04.

SQL> ALTER TABLE shipped_t MOVE
 2 SUBPARTITION sys_subp1234
 3 TABLESPACE data04 ;
 SUBPARTITION sys_subp1234

 Oracle9i Database: Implement Partitioning B-40

Practice 4-3: Exchange partition and table

1. Another season has passed, and it is time for the next rolling window operation of SHIPPED.
However, an analyst wants to perform an in-depth analysis of the data in the SHP_Q2_2002
partition that you are about to discard, and asks that it be provided as a separate table.

Create a suitable table, called OLD_SHIPPED in the USERS tablespace. Create an index on
OLD_SHIPPED.PROD_ID.

SQL> CREATE TABLE old_shipped
 2 AS SELECT * FROM shipped
 3 WHERE ROWNUM < 1 ;

Table created.

SQL> CREATE INDEX shp_tab
 2 ON old_shipped (prod_id) ;

Index created.

2. Exchange SHP_Q2_2002 and OLD_SHIPPED, with the index.

SQL> ALTER TABLE shipped EXCHANGE
 2 PARTITION shp_q2_2002
 3 WITH TABLE old_shipped
 4 INCLUDING INDEXES ;

Table altered.

3. What is the status of the involved data now, specifically:

3a. Which tablespace is the old SHIPPED data, now in the OLD_SHIPPED table, located?

Answer: Because it has not been moved, it is in the same place as before,, that is, in the
production tablespace DATAnn.

3b. Can the old data be queried through the SHIPPED table?

Answer: No

3c. If you now drop the SHP_Q2_2002 partition, will there be any unexpected side effects??

Answer: No. It should be as empty as the OLD_SHIPPED was before the exchange.

3d. How might you get the old data out of the production tablespaces (DATAnn)?

Answer1:ALTER TABLE OLD_SHIPPED MOVE …

Answer2:ALTER TABLE MOVE PARTITION SHP_Q2_2002 … before doing the
exchange

 Oracle9i Database: Implement Partitioning B-41

SQL> SELECT TABLE_NAME, PARTITION_NAME,
 2 PARTITION_NAME, TABLESPACE_NAME
 3 FROM USER_TAB_PARTITIONS
 4 WHERE TABLE_NAME LIKE '%SHIPPED' ;

TABLE_NAME Part.Name Part.Name TABLESPACE
------------ ------------------ ------------------ ----------
SHIPPED SHP_Q2_2002 SHP_Q2_2002 USERS
SHIPPED SHP_Q3_2002 SHP_Q3_2002 DATA02
SHIPPED SHP_Q4_2002 SHP_Q4_2002 DATA02
SHIPPED SHP_Q1_2003 SHP_Q1_2003 DATA03
SHIPPED SHP_Q2_2003 SHP_Q2_2003 DATA03
SHIPPED SHP_Q3_2003 SHP_Q3_2003 DATA03

4. Check the status of the indexes on both OLD_SHIPPED and SHIPPED.

SQL> SELECT INDEX_NAME, INDEX_TYPE, UNIQUENESS, STATUS,
 2 TABLESPACE_NAME, PARTITIONED
 3 FROM USER_INDEXES
 4 WHERE TABLE_NAME like '%SHIPPED' ;

INDEX_NAME INDEX_TYPE Uq. STATUS TABLESPACE PAR
---------------- --------------- --- -------- ---------- ---
SHP_GL_AM NORMAL NON N/A YES
SHP_LC_PI NORMAL NON N/A YES
SHP_NP_CI NORMAL NON UNUSABLE USERS NO
SHP_TAB NORMAL NON VALID DATA02 NO

SQL>
SQL> SELECT INDEX_NAME, PARTITION_NAME,
 2 HIGH_VALUE, STATUS, TABLESPACE_NAME
 3 FROM USER_IND_PARTITIONS
 4 WHERE INDEX_NAME LIKE 'SHP%' ;

INDEX_NAME Part.Name HIGH_VALUE STATUS TABLESPACE
---------------- ------------------ ---------- -------- ----------
SHP_LC_PI SHP_Q3_2003 TIMESTAMP' USABLE DATA03
SHP_LC_PI SHP_Q2_2002 TIMESTAMP' USABLE USERS
SHP_LC_PI SHP_Q3_2002 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q4_2002 TIMESTAMP' USABLE DATA02
SHP_LC_PI SHP_Q1_2003 TIMESTAMP' USABLE DATA03
SHP_LC_PI SHP_Q2_2003 TIMESTAMP' USABLE DATA03
SHP_GL_AM S_G_1 10 UNUSABLE INDX01
SHP_GL_AM S_G_2 MAXVALUE UNUSABLE INDX02

 Oracle9i Database: Implement Partitioning B-42

Practice 5-1 Export and Import of Partition

This exercise demonstrates the use of Export and Import with partitioned tables and should
be performed as user sh. Export the 1998 Q1 partition. Name the export dump file
sales_q1_1998.dmp and make sure it resides in your home directory. Perform a query
that accesses data in this partition, then truncate the sales_q1_1998 partition. Use
Import to restore the data.

1. Connect as user sh and confirm the SALES table partition names.

SQL> Connect sh/sh
SQL> select partition_name from user_tab_partitions
 2 where table_name = 'SALES';

PARTITION_NAME

SALES_Q1_1998
SALES_Q2_1998
SALES_Q3_1998
SALES_Q4_1998
SALES_Q1_1999
SALES_Q2_1999
SALES_Q3_1999
SALES_Q4_1999
SALES_Q1_2000
SALES_Q2_2000
SALES_Q3_2000

PARTITION_NAME

SALES_Q4_2000

12 rows selected.

2. Perform the export. Make sure the dump file is written to your home directory.

$ exp sh/sh tables = sales:sales_q1_1998 file = $HOME/sales_q1_1998.dmp

Export: Release 9.0.1.0.0 - Production on Fri Jan 11 13:55:10 2002
Oracle9i Enterprise Release 9.0.1.0.0 With Partitioning option
Export done in US7ASCII character set and AL16UTF16 NCHAR character set
server uses WE8ISO8859P1 character set (possible charset conversion)

About to export specified tables via Conventional Path ...
. . exporting table SALES
. . exporting partition SALES_Q1_1998 71805 rows
exported
EXP-00091: Exporting questionable statistics.
...
Export terminated successfully with warnings.

 Oracle9i Database: Implement Partitioning B-43

3. Perform a query that accesses data in the SALES_Q1_1998 partition.

SQL> select prod_id, cust_id from sh.sales where
 2 time_id = '01-MAR-1998';

PROD_ID CUST_ID
---------- ----------
 40690 42570
 1265 138090
 17035 35840
 12605 35640
 9015 26690
 11265 11850
 ...
 PROD_ID CUST_ID
---------- ----------
 2555 27430
 3975 54230

750 rows selected.

4. Truncate the data in the partition SALES_Q1_1998.

SQL> alter table sales truncate partition sales_q1_1998;

Table altered.

5. Verify that the data is gone.

SQL> select prod_id, cust_id from sh.sales where
 2 time_id = '01-MAR-1998';

no rows selected

6. Import the data back into the empty partition.

$ imp sh/sh tables = sales:sales_q1_1998 ignore=y
file=$HOME/sales_q1_1998.dmp
...
Export file created by EXPORT:V09.00.01 via conventional path
import done in US7ASCII character set and AL16UTF16 NCHAR char set
import server uses WE8ISO8859P1 character set (possible charset
conversion)
. importing SH's objects into SH
. . importing partition "SALES":"SALES_Q1_1998" 71805 rows
imported
Import terminated successfully without warnings.

 Oracle9i Database: Implement Partitioning B-44

7. Repeat the same query executed previously to verify that the data has been restored.

SQL> select prod_id, cust_id from sh.sales where
 2 time_id = '01-MAR-1998';

PROD_ID CUST_ID
---------- ----------
 40690 42570
 1265 138090
 17035 35840
 12605 35640
 9015 26690
 11265 11850
 ...
 PROD_ID CUST_ID
---------- ----------
 2555 27430
 3975 54230

750 rows selected.

 Oracle9i Database: Implement Partitioning B-45

Practice 5-2: Load a partition with SQL*Loader

This practice demonstrates how SQL*Loader works with partitioned tables. As user sh, truncate
the SALES_Q1_1998 partition from the SALES table. The partition data will be loaded from the
sh_sales.dat file located in $ORACLE_HOME/demo/schema/sales_history
directory. Using the sh_sales.ctl control file as a model, create your own SQL*Loader
control file in your home directory and reload the SALES_Q1_1998 partition.

1. Truncate the data in the SALES_Q1_1998 partition.

SQL> connect sh/sh
SQL> alter table sales truncate partition sales_q1_1998;Table altered.

2. Verify that the partition is empty.

SQL> select prod_id, cust_id from sh.sales where
 2 time_id = '01-MAR-1998';

no rows selected

3. Make sure you are in your home directory. Copy the sh_sales.ctl file to sales.ctl and
make the necessary edits.

$ cd
$ cp $ORACLE_HOME/demo/schema/sales_history/sh_sales.ctl sales.ctl
$ vi sales.ctl

LOAD DATA
APPEND
INTO TABLE sales partition (sales_q1_1998)
FIELDS TERMINATED BY "|"
(PROD_ID, CUST_ID, TIME_ID, CHANNEL_ID, PROMO_ID,
 QUANTITY_SOLD, AMOUNT_SOLD)
~
~

4. Use SQL*Loader to load the data into the partition SALES_Q1_1998 partition.

$ sqlldr sh/sh control = $HOME/sales.ctl log = $home/sales.log \
 data = $ORACLE_HOME/demo/schema/sales_history/sh_sales.dat \
 rows=10000

SQL*Loader: Release 9.0.1.0.0 - Production on Sat Jan 12 00:24:11 2002

(c) Copyright 2001 Oracle Corporation. All rights reserved.

Commit point reached - logical record count 141
Commit point reached - logical record count 282
Commit point reached - logical record count 423
Commit point reached - logical record count 564
Commit point reached - logical record count 705
Commit point reached - logical record count 846
Commit point reached - logical record count 987

 Oracle9i Database: Implement Partitioning B-46

Commit point reached - logical record count 1128
Commit point reached - logical record count 1269
Commit point reached - logical record count 1410
...
Commit point reached - logical record count 71746
Commit point reached - logical record count 71887

5. Verify that the data has been successfully loaded.

SQL> select prod_id, cust_id from sh.sales where
 2 time_id = '01-MAR-1998';

PROD_ID CUST_ID
---------- ----------
 40690 42570
 1265 138090
 17035 35840
 12605 35640
 9015 26690
 11265 11850
 ...
 PROD_ID CUST_ID
---------- ----------
 2555 27430
 3975 54230

750 rows selected.

 Oracle9i Database: Implement Partitioning B-47

Practice 5-3 Partitions in Transportable Tablespaces

This exercise demonstrates self-containment of partitioned tables in transportable tablespaces.
Perform all steps of this exercise as sysdba. Any transportable tablespace candidate must
be self-contained. Perform a self-containment check of the tablespace SAMPLE. Then move
the SALES partition SALES_Q1_1998 to the USERS tablespace. Perform another self-
containment check and observe the differences.

1. Check for self-containment, using the dbms_tts.transport_set_check procedure.

SQL> connect / as sysdba
SQL> EXECUTE dbms_tts.transport_set_check ('SAMPLE');

PL/SQL procedure successfully completed.

2. View any violations by querying the TRANSPORT_SET_VIOLATIONS table.

SQL> SELECT * FROM TRANSPORT_SET_VIOLATIONS;

VIOLATIONS
--
Snapshot SH.CAL_MONTH_SALES_MV in tablespace SAMPLE not allowed in transportable set
Snapshot SH.CAL_MONTH_SALES_MV in tablespace SAMPLE not allowed in transportable set
Snapshot SH.FWEEK_PSCAT_SALES_MV in tablespace SAMPLE not allowed in transportable set
Snapshot SH.FWEEK_PSCAT_SALES_MV in tablespace SAMPLE not allowed in transportable set

VIOLATIONS
--
Master table SH.TIMES in tablespace SAMPLE not allowed in transportable set
Master table SH.PRODUCTS in tablespace SAMPLE not allowed in transportable set

6 rows selected.

3. Give user sh unlimited quota on the USERS tablespace and move the
SALES_Q1_PARTITION:

SQL> alter user sh quota unlimited on users;
User altered.

SQL> alter table sh.sales move partition sales_q1_1998
tablespace users;

Table altered.

4. Rerun the self-containment check:

SQL> EXECUTE dbms_tts.transport_set_check('SAMPLE',TRUE);

PL/SQL procedure successfully completed.

 Oracle9i Database: Implement Partitioning B-48

5. Check again for violations.

SQL> SELECT * FROM TRANSPORT_SET_VIOLATIONS;

VIOLATIONS
--
Partitioned Global index SH.SALES_CHANNEL_BIX in tablespace SAMPLE points to par
tition SALES_Q1_1998 of table SH.SALES in tablespace USERS outside of transporta
ble set

Partitioned Global index SH.SALES_CHANNEL_BIX in tablespace SAMPLE points to par
tition SALES_Q1_1998 of table SH.SALES in tablespace USERS outside of transporta
ble set

Partitioned Global index SH.SALES_CHANNEL_BIX in tablespace SAMPLE points to par
tition SALES_Q1_1998 of table SH.SALES in tablespace USERS outside of transporta
ble set

VIOLATIONS
--
Partitioned Global index SH.SALES_CHANNEL_BIX in tablespace SAMPLE points to par
tition SALES_Q1_1998 of table SH.SALES in tablespace USERS outside of transporta
ble set

SAMPLE points to partition SALES_Q1_1998 of table SH.SALES in tablespace USERS ou
tside of transportable set

...

 Oracle9i Database: Implement Partitioning B-49

Practice 6-1 Rolling Window Operation

This exercise emphasizes the mechanics of performing rolling-window operations. Our
attention will be focused on the fact table SALES in the SH schema. It has now become
necessary to drop the oldest partition, SALES_q1_1998, and add a brand new
SALES_q1_2001 partition. Perform the necessary steps to accomplish this task. Don’t forget
about index maintenance.

1. Connect as SH and query the partitions currently comprising the SALES table.

SQL> connect sh/sh
SQL> select partition_name from user_tab_partitions
 2 where table_name = 'SALES';

PARTITION_NAME

SALES_Q1_1998 (partition to drop)
SALES_Q2_1998
SALES_Q3_1998
SALES_Q4_1998
SALES_Q1_1999
SALES_Q2_1999
SALES_Q3_1999
SALES_Q4_1999
SALES_Q1_2000
SALES_Q2_2000
SALES_Q3_2000

PARTITION_NAME

SALES_Q4_2000

12 rows selected.

2. Drop the partition SALES_Q1_1998.

SQL> alter table sales
 2 drop partition sales_q1_1998;

Table altered.

3. Add another partition SALES_Q1_2001 above the partition SALES_Q4_2000. Since that
partition is bounded by MAXVALUE, you must split SALES_Q4_2000.

SQL> alter table sales
 2 split partition SALES_Q4_2000
 3 at (to_date('01-JAN-2001', 'DD-MON-YYYY')) into
 4 (partition SALES_Q4_2000, partition SALES_Q1_2001);

Table altered.

 Oracle9i Database: Implement Partitioning B-50

4. Check to see that the new SALES_Q1_2001 partition has been properly created.

SQL> select partition_name from user_tab_partitions
 2 where table_name = 'SALES';

PARTITION_NAME

SALES_Q2_1998
SALES_Q3_1998
SALES_Q4_1998
SALES_Q1_1999
SALES_Q2_1999
SALES_Q3_1999
SALES_Q4_1999
SALES_Q1_2000
SALES_Q2_2000
SALES_Q3_2000
SALES_Q4_2000
SALES_Q1_2001 (new partition)

5. The indexes for the fact table SALES must reflect the fact that you have dropped one
partition and added another. Query the USER_PART_INDEXES view to determine the
associated indexes for the table.

SQL> select index_name from user_part_indexes
 2 where table_name = 'SALES';

INDEX_NAME

SALES_CHANNEL_BIX
SALES_CUST_BIX
SALES_PROD_BIX
SALES_PROMO_BIX
SALES_TIME_BIX

6. Identify the index partitions to be rebuilt. Select the index partition_name from the
USER_IND_PARTITIONS view.

SQL> select partition_name from user_ind_partitions
 2 where index_name = 'SALES_CHANNEL_BIX';

PARTITION_NAME

SALES_Q2_1998
...
SALES_Q4_2000
SALES_Q1_2001

11 rows selected.

SQL> select partition_name from user_ind_partitions where index_name =
'SALES_CUST_BIX';

 Oracle9i Database: Implement Partitioning B-51

PARTITION_NAME

SALES_Q2_1998
...
SALES_Q4_2000
SALES_Q1_2001

SQL> select partition_name from user_ind_partitions
 2 where index_name = 'SALES_PROD_BIX';

PARTITION_NAME

SALES_Q2_1998
...
SALES_Q4_2000
SALES_Q1_2001

SQL> select partition_name from user_ind_partitions
 2 where index_name = 'SALES_PROMO_BIX';

PARTITION_NAME

SALES_Q2_1998
...
SALES_Q4_2000
SALES_Q1_2001

SQL> select partition_name from user_ind_partitions
 2 where index_name = 'SALES_TIME_BIX';

PARTITION_NAME

SALES_Q2_1998
...
SALES_Q4_2000
SALES_Q1_2001

12 rows selected.

7. Rebuild the affected indexes.

SQL> ALTER INDEX SALES_CHANNEL_BIX REBUILD PARTITION SALES_Q4_2000;
Index altered.

SQL> ALTER INDEX SALES_CHANNEL_BIX REBUILD PARTITION SALES_Q1_2001;
Index altered.

SQL> ALTER INDEX SALES_CUST_BIX REBUILD PARTITION SALES_Q4_2000;
Index altered.

SQL> ALTER INDEX SALES_CUST_BIX REBUILD PARTITION SALES_Q1_2001;

 Oracle9i Database: Implement Partitioning B-52

Index altered.

SQL> ALTER INDEX SALES_PROD_BIX REBUILD PARTITION SALES_Q4_2000;
Index altered.

SQL> ALTER INDEX SALES_PROD_BIX REBUILD PARTITION SALES_Q1_2001;
Index altered.

SQL> ALTER INDEX SALES_PROMO_BIX REBUILD PARTITION SALES_Q4_2000;
Index altered.

SQL> ALTER INDEX SALES_PROMO_BIX REBUILD PARTITION SALES_Q1_2001;
Index altered.

SQL> ALTER INDEX SALES_TIME_BIX REBUILD PARTITION SALES_Q4_2000;
Index altered.

SQL> ALTER INDEX SALES_TIME_BIX REBUILD PARTITION SALES_Q1_2001;
Index altered.

 Oracle9i Database: Implement Partitioning B-53

Practice 6-2 Partitioned View to Partitioned Table Conversion

In this exercise, you will create a partition view and then complete the steps required to
convert it to a partitioned table. As user sh, create three standard tables as select * from sales,
partitions SALES_Q1_1999 through SALES_Q1_1999 inclusive. Create a partitioned view
called SALES_PART_VIEW from the three newly created tables. Run the
$HOME/STUDENT/LABS/lab_06_02_view_to_table.sql script to create an
empty partitioned table called SALES_PART_TABLE. Exchange each partition with its
corresponding table.

1. Create tables.

SQL> connect sh/sh
SQL> create table q1_1999_sales as
 2 select * from sales partition (sales_q1_1999);
Table created.

SQL> create table q2_1999_sales as
 2 select * from sales partition (sales_q2_1999);
Table created.

SQL> create table q3_1999_sales as
 2 select * from sales partition (sales_q3_1999);
Table created.

2. Create the partitioned view. Connect as SYSDBA and grant create view to the user sh to
accomplish this.

SQL> connect / as sysdba
SQL> grant create view to sh;
SQL> connect sh/sh

SQL> create view sales_part_view as
 2 select * from sh.q1_1999_sales
 3 union all
 4 select * from sh.q2_1999_sales
 5 union all
 6 select * from sh.q3_1999_sales;

View created.

3. Prepare for the migration by creating the partitioned table SALES_PART_TABLE. You can
create it by running the script
$HOME/STUDENT/LABS/lab_06_02_view_to_table.sql. Please inspect this
script before you execute it. It will be empty in anticipation of the migrated data, so notice
that a segment of two blocks is specified as an initial storage value to act as a placeholder.

 Oracle9i Database: Implement Partitioning B-54

SQL> !cat $HOME/STUDENT/LABS/lab_06_02_view_to_table.sql
CREATE TABLE sales_part_table
 (prod_id NUMBER(6)
 CONSTRAINT sale_product_nn NOT NULL
 , cust_id NUMBER
 CONSTRAINT sales_customer_nn NOT NULL
 , time_id DATE
 CONSTRAINT sale_time_nn NOT NULL
 , channel_id CHAR(1)
 CONSTRAINT sale_channel_nn NOT NULL
 , promo_id NUMBER(6)
 CONSTRAINT sales_promo_nn NOT NULL
 , quantity_sold NUMBER(3)
 CONSTRAINT sale_quantity_nn NOT NULL
 , amount_sold NUMBER(10,2)
 CONSTRAINT sale_amount_nn NOT NULL
) TABLESPACE sample STORAGE (INITIAL 2)
 PARTITION BY RANGE (time_id)
 (PARTITION SALES_Q1_1999 VALUES LESS THAN

(TO_DATE('01-APR-1999','DD-MON-YYYY')),
 PARTITION SALES_Q2_1999 VALUES LESS THAN

(TO_DATE('01-JUL-1999','DD-MON-YYYY')),
 PARTITION SALES_Q3_1999 VALUES LESS THAN (MAXVALUE))
;
SQL> connect sh/sh
SQL>@$HOME/STUDENT/LABS/lab_06_02_view_to_table.sql
Table created.

4. Use the EXCHANGE PARTITION statement to migrate the tables to the corresponding
partitions.

SQL> alter table SALES_PART_TABLE
 2 exchange partition sales_q1_1999 with table
 3 sh.q1_1999_sales with validation;
Table altered.

SQL> alter table SALES_PART_TABLE
 2 exchange partition sales_q2_1999 with table
 3 sh.q2_1999_sales with validation;
Table altered.

SQL> alter table SALES_PART_TABLE
 2 exchange partition sales_q3_1999 with table
 3 sh.q3_1999_sales with validation;
Table altered.

 Oracle9i Database: Implement Partitioning B-55

5. In the real world, you would then drop the original partitioned view and use the old view
name to rename the new partitioned table so that the change would be transparent to the users.

SQL> drop view sales_part_view
View dropped.

SQL> rename sales_part_table to sales_part_view
Table renamed.

 Oracle9i Database: Implement Partitioning B-56

Practice 6-3 A Very Mixed Table

In this exercise, you will execute the lab_06_03_create_mix.sql script located in the
$HOME/STUDENT/LABS directory to create a table that will demonstrate partitioned table
support of various data types, data organization, constraints, and so on. The table is called
MIX and creates the following columns and datatypes:

NU – NUMBER
CH – CHAR
VC – VARCHAR
CL – CLOB
BL – BLOB
TS - TIMESTAMP

NU and VC are primary keys while CH and VC are unique. The table is range partitioned on
the VC column. The MIX table uses tablespaces DATA01 through DATA04 and INDEX01
through INDEX04 for storage, both primary and overflow. Two local indexes are created,
one on TS and another on VC and TS.

Spend a few moments and inspect the lab_06_03_create_mix.sql script. Pay special
attention to the column datatypes, partitioning statements, storage parameters, constraints,
and index creation.

REM create Partition Table
REM

DROP TABLE mix ;

CREATE TABLE mix
/* --- Column defenitions, thus relational --- */
 (nu NUMBER(6)
 /*CONSTRAINT mix_pk PRIMARY KEY*/
 , ch CHAR(10)
 /*CONSTRAINT mix_uq UNIQUE*/
 , vc VARCHAR2(20)
 CONSTRAINT mix_ck CHECK (LENGTH(vc)>5)
 , cl CLOB
 , bl BLOB
 , CONSTRAINT mix_pk UNIQUE (nu, vc)
 , CONSTRAINT mix_uq UNIQUE (ch, vc)
 , ts TIMESTAMP(2)
)
/*
 --- plain or index organized
*/
ORGANIZATION HEAP
/*
 --- Nested or vararray section ---
*/
/* none */
/*

 Oracle9i Database: Implement Partitioning B-57

 --- Lob attributes ---
*/
LOB (cl) STORE AS mix_cl
 (TABLESPACE data04
 DISABLE STORAGE IN ROW
)
LOB (bl) STORE AS mix_bl
 (/* TABLESPACE data04 */
 DISABLE STORAGE IN ROW
)
/*
 --- Physical attributes of table ---
*/
TABLESPACE indx04
PCTFREE 5
-- PCTTHRESHOLD 20 >>IOT
-- OVERFLOW TABLESPACE index01 >> IOT
/*
 --- Partition clauses ---
*/
PARTITION BY RANGE (vc) /* alternativly SUBPARTITION; HASH; LIST */
 (PARTITION mix_p1 VALUES LESS THAN ('A')
 TABLESPACE data02
 PCTFREE 10
 -- OVERFLOW TABLESPACE indx02
 LOB (cl) STORE AS mix_cl_p1
 (DISABLE STORAGE IN ROW)
 LOB (bl) STORE AS mix_bl_p1
 (ENABLE STORAGE IN ROW
 TABLESPACE data02
)
 , PARTITION mix_p2 VALUES LESS THAN (']' /* chr(asc('Z')+1) */)
 TABLESPACE data03
 PCTFREE 10
 -- OVERFLOW TABLESPACE indx02
 LOB (cl) STORE AS mix_cl_p2
 (DISABLE STORAGE IN ROW)
 LOB (bl) STORE AS mix_bl_p2
 (ENABLE STORAGE IN ROW
 /* TABLESPACE data02 */
)
 , PARTITION mix_p3 VALUES LESS THAN ('~')
 TABLESPACE data03
 PCTFREE 10
 -- OVERFLOW TABLESPACE indx02
 LOB (cl) STORE AS mix_cl_p3
 (DISABLE STORAGE IN ROW)
 LOB (bl) STORE AS mix_bl_p3
 (ENABLE STORAGE IN ROW
 /* TABLESPACE data02 */
)
 , PARTITION mix_p4 VALUES LESS THAN (MAXVALUE)
 TABLESPACE data03
 PCTFREE 10

 Oracle9i Database: Implement Partitioning B-58

 -- OVERFLOW TABLESPACE indx02
 LOB (cl) STORE AS mix_cl_p4
 (DISABLE STORAGE IN ROW)
 LOB (bl) STORE AS mix_bl_p4
 (ENABLE STORAGE IN ROW
 TABLESPACE data02
)
)
ENABLE ROW MOVEMENT
/*--- Constraints, indexes used with ---*/
ENABLE CONSTRAINT mix_pk USING INDEX
 GLOBAL PARTITION BY RANGE (nu)
 (PARTITION mix_pk_p1 VALUES LESS THAN (0)
 TABLESPACE indx02
 , Partition mix_pk_p2 VALUES LESS THAN (MAXVALUE)
 TABLESPACE indx03
)
ENABLE CONSTRAINT mix_uq USING INDEX
 LOCAL
;
/*Lets insert some values*/
INSERT INTO mix VALUES
 (1, 'Hello', 'This is a test', empty_clob(), empty_blob(),
LOCALTIMESTAMP) ;
DECLARE
 clob_loc CLOB;
 txt_buff VARCHAR2(1000) ;
BEGIN
 SELECT cl INTO clob_loc FROM mix WHERE nu=1 /*not FOR UPDATE*/ ;
 txt_buff := RPAD('OneThousand characters', 1000, 'bla ') ;
 FOR i IN 1..10 LOOP
 DBMS_LOB.WRITEAPPEND (clob_loc, 1000, txt_buff);
 END LOOP;
END;
/
DECLARE
 blob_loc BLOB;
 raw_buff RAW(1000) ;
BEGIN
 SELECT bl INTO blob_loc FROM mix WHERE nu=1 FOR UPDATE ;
 raw_buff := HEXTORAW(RPAD('1000', 2000, '1000')) ;
 FOR i IN 1..10 LOOP
 DBMS_LOB.WRITEAPPEND (blob_loc, 1000, raw_buff);
 END LOOP;
END;
/

INSERT INTO mix VALUES
 (2, 'Hi there', 'continuation of test', NULL, NULL, LOCALTIMESTAMP) ;
UPDATE mix SET
 cl=(SELECT cl FROM mix WHERE nu=1),
 bl=(SELECT bl FROM mix WHERE nu=1)
 WHERE nu=2;

 Oracle9i Database: Implement Partitioning B-59

INSERT INTO mix
 SELECT -2, 'Hi again', '... test', cl,bl, LOCALTIMESTAMP
 FROM mix WHERE nu = 2 ;

CREATE INDEX mix_ts1 ON mix (ts) LOCAL ;
CREATE INDEX mix_ts2 ON mix (vc, ts) LOCAL ;

1. Execute the script $HOME/STUDENT/LABS/lab_06_03_create_mix.sql.

SQL> connect system/manager
SQL> @$HOME/STUDENT/LABS/lab_06_03_create_mix.sql
Table dropped.
Table created.
1 row created.
PL/SQL procedure successfully completed.
PL/SQL procedure successfully completed.
1 row created.
1 row updated.
1 row created.
Index created.
Index created.

2. Check table and partition creation.

SQL> select partition_name,tablespace_name from dba_tab_partitions
 2 where table_name = 'MIX';

PARTITION_NAME TABLESPACE_NAME
------------------------------ ------------------------------
MIX_P1 DATA02
MIX_P2 DATA03
MIX_P3 DATA03
MIX_P4 DATA03

3. Look at the partitioned columns.

SQL> select column_name, object_type, column_position
 2 from dba_part_key_columns where name = 'MIX';

COLUMN_NAM OBJECT_TYPE COLUMN_POSITION
---------- ----------- ---------------
VC TABLE 1

 Oracle9i Database: Implement Partitioning B-60

4. Look at the indexes associated with the MIX table.

SQL> select index_name, index_type, partitioned
 2 from dba_indexes where table_name = 'MIX';

INDEX_NAME INDEX_TYPE PAR
------------------------------ --------------------------- ---
MIX_PK NORMAL YES
SYS_IL0000005177C00005$$ LOB YES
SYS_IL0000005177C00004$$ LOB YES
MIX_UQ NORMAL YES
MIX_TS1 NORMAL YES
MIX_TS2 NORMAL YES

	Contents
	Preface
	1 Introduction to Partitioning
	2 Implementing Partitioned Tables
	3 Implementing Partitioned Indexes
	4 Maintenance of Partitioned Tables and Indexes
	5 Partitioning Interaction
	6 Practical Partitioning
	Appendix A: Practices
	Appendix B: Solutions

