
Database Partitioning for Oracle
E-Business Suite

An Oracle White Paper
 February 2008

Database Partitioning for Oracle E-Business Suite Page 2

Database Partitioning for
Oracle E-Business Suite

Overview... 6
Introduction ... 6
What is partitioning and how does it work?.. 8

Partitioning for Performance - Partition Pruning 8
Partition-wise Joins .. 8
Table Availability/Improved Manageability... 9
Performance – The Need for Speed.. 9
Physical Organization & Reduction in Total Cost of Ownership
(TCO)... 9

Partitioning Concepts ... 10
Partition Key.. 10
Table Partitions ... 10

The Evolution of Partitioning ... 10
Partitioning & the Oracle E-Business Suite .. 11

Frequently Asked Questions: Using Database Partitioning with the
Oracle E-Business Suite... 11

What Does "Fully Supported" Mean?... 11
What Is Custom Partitioning? .. 11
Examples of Custom Partitioning ... 12
Example of Creating a Partitioned Table ... 12

Table Partitioning Strategy... 12
Multicolumn Partition Key ... 13
Table Type... 13

Range Partitioning .. 14
Example creation script... 14
Summary: ... 14

List Partitioning... 15
Summary.. 16

Hash Partitioning .. 16
Summary: ... 16

Composite Partitioning .. 17
Summary: ... 18

Multicolumn Partitioning... 18

Database Partitioning for Oracle E-Business Suite Page 3

Index Partitioning Methods ... 18
Automatically Maintaining Indexes ... 19

Global Partitioned Indexes.. 20
Prefixed and Non-prefixed Indexes .. 20
Maintaining Global Partitioned Indexes ... 20
Maintaining Global Hash Partitioned Indexes................................... 21

Local Partitioned Indexes .. 21
Local Prefixed & Non-Prefix (Partitioned Indexes) 22
Global Nonpartitioned Indexes ... 22
Performance Considerations regarding Prefixed and Nonprefixed
Indexes... 22

Summary .. 23
Maintenance of Partitioned Tables & Indexes 23
Partition Maintenance Operations and Table Partitioning Methods .. 24
Partition Maintenance Operations and Index Type/Partitioning
Methods.. 25

Table Compression ... 25
Implementing Compression.. 27
Creating a Compressed Table ... 27
Converting Tables to Compressed Tables: ... 27

Before compression: .. 27
After Compression:.. 28

Example: Compressing Large Tables (Large Volume Oracle E-
Business Suite Customer 10.5TB Database). .. 28

Before compression: .. 28
After Compression:.. 28

When To Use Partitioning? ... 30
Decision Process: Steps for Creating Partitioned Tables/Indexes...... 30
Step 1 – Is Partitioning Necessary? .. 30
Step 2 - Should I Partition This Object? ... 31
Step 3 - Which Partitioning Method Should I Use? 32
Step 4 - Identifying the Partition Key.. 32
Step 5 – Performance Check & Access Path Analysis 33
Step 6 – Partitioned Table Creation and Data Migration 33

Method: 1 – Straight Insert... 34
Oracle Data Pump ... 35
Method 2 – Import/Export using Data Pump.................................. 35

Step 7 – Maintenance Step .. 37
Partition Maintenance Operations.. 37

Adding Partition/Subpartition.. 37
Range and List .. 37
Hash and Hash Subpartition .. 38

Dropping Partitions.. 38
Table Partitions... 38
Index Partitions .. 39

Moving Partitions ... 39

Database Partitioning for Oracle E-Business Suite Page 4

Table Partitions... 39
Index Partitions .. 39
Regular (Heap) Organized Table ... 39

Splitting Partitions .. 40
Table Partitions... 40
Index Partitions .. 40
Regular (Heap) Organized Table ... 40

Merging Partitions .. 40
Table Partitions... 41
Index Partitions .. 41

Exchanging a Partition with a Table .. 41
Renaming Partitions ... 42

Example of How to Partition a Table .. 42
Example: Partitioning - AP_INVOICE_DISTRIBUTIONS_ALL
(Oracle Payables)... 42

How is this table used? .. 43
Index Analysis... 44
Conclusion... 45

Examples of Partition Keys for Oracle Applications Tables 46
Practical Partitioning Case Study .. 49

Oracle General Ledger ... 49
Background – Current Table Volumes ... 49
Strategy... 49
Partition Maintenance.. 50
Index Strategy ... 50
GL_JE_LINES Indexes.. 51
GL-BALANCES Indexes ... 51
GL_DAILY_BALANCES Indexes .. 51
The Benefits of This Partitioning Strategy ... 51

Oracle Payables ... 52
Background ... 52
Data Analysis .. 52
Results .. 52

Conclusion.. 54
References .. 55
Revisions... 55
Appendix A - Oracle Data Dictionary Table & Views for Partitioning.. 56
Appendix B - Useful Database Views .. 57

Database Partitioning for Oracle E-Business Suite Page 5

An Introduction to Database Partitioning

OVERVIEW
Over the last few decades, the nature of enterprise computing has changed. Many
Enterprise Resource Planning (ERP) systems have merged with Customer
Relationship Management (CRM) systems and Business Intelligence (BI). The result
is a single consolidated source of corporate information. Using Oracle E-Business
Suite, customers can obtain a complete picture of their business from a single
source. At the centre of the Oracle E-Business Suite is the Oracle database.
Oracle’s database architecture includes the ability to partition tables and indexes.
Partitioning allows a single table and its associated indexes to be broken into
smaller components depending on the table and choice of index partitioning
methods.

INTRODUCTION
The Oracle E-Business Suite remains the information backbone for many
enterprises and provides a platform that integrates data from a variety of sources.
Inevitably, data correlation sometimes results in high data volumes concentrated in
a few key tables. This can introduce performance problems when working with the
data, and therefore you need a method of reducing the cost of retrieving and
manipulating the data. A number of methods can be employed to enhance
performance such as adding additional indexes, changing the access path of the
optimizer, in order to avoid more expensive solutions such as adding faster storage,
additional caching, or CPU. Both hardware solutions have constraints. Disks and
CPU have a finite performance and the fastest technologies command a significant
price premium. Inevitably, you will need to consider data management in order to
control the system resources and ensure maintain system performance levels.

This white paper introduces the concept of
partitioning using examples from the

Oracle E-Business Suite and describes
the best practices that can be employed to

partition tables in the Oracle E-Business
Suite and briefly describes the SQL

commands that are available for
maintaining partitioned tables and indexes

Archiving and purging can be used to control the growth of data. Instead, you may
want to consider the partitioning database feature, where tables and indexes are
broken down into smaller components. This feature has the advantage of ensuring
good performance while ensuring immediate accessibility without needing to
restore archives. Database partitioning is transparent and fully supported for the
Oracle E-Business Suite. All decisions relating to how to access data is handled
within the database, specifically by the cost based optimizer (CBO). The use of
custom partitioning within the Oracle E-Business Suite is fully supported and it is a
feature we encourage all customers to explore the usage of. This paper introduced
the concept of database partitioning by describing several partitioning methods and

Database Partitioning for Oracle E-Business Suite Page 6

describes the differences between each approach using examples from the Oracle
E-Business Suite. Additionally, this paper discusses how database partitioning can
be used to provide high performance and improve scalability by reducing SQL
transactions to only access data subsets. It also describes how partitioning can be
used with table compression to further reduce storage requirements.

The second part of this paper describes the best practices for partitioning a table or
index within the Oracle E-Business Suite. It includes guidelines on the selection of
a suitable partition key and how to migrate data to a partitioned table. Finally a brief
description of the commands available for maintaining partitioned tables and
indexes is also included.

It should be noted that the examples being used in this paper are not absolute. In
most cases these examples are demonstrating a concept. It is recommended that
customers perform a detailed analysis before deciding on what and how to
partition.

Database Partitioning for Oracle E-Business Suite Page 7

WHAT IS PARTITIONING AND HOW DOES IT WORK?
Partitioning divides a table, index, or index-organized table into smaller pieces.
Each piece is called a partition (or subpartition for composite partitioned objects).
Each partition has its own name, and may optionally have individual storage
characteristics, such as compression or being stored in different tablespaces.
Partitioning enables fast query access and updates by limiting the DML operation
to only those partitions that need be accessed. Partitioning provides several
performance-enhancing features:

Partitioning splits tables and indexes into
smaller, more manageable, components

and is a key requirement for any large
database with high performance

requirements.

Partitioning for Performance - Partition Pruning

This feature causes the optimizer (CBO) to skip unnecessary partitions that are not
required by a particular SQL statement. Depending upon the SQL statement, the
optimizer can explicitly recognize partitions and subpartitions that need to be
accessed and the ones that can be eliminated. This can result in substantial
improvements in query performance, because the optimizer is focusing on a
specific subset of data which can be refined further if additional predicates exist.
Internally the optimizer will eliminate the partitions at query execution time using
the partition information in the data dictionary. The advantage of this is that we can
determine the content of a given partition without having to query that partition;
this eliminates the need to query the actual data in the partition.

The optimizer cannot prune partitions if the SQL statement applies a function to
the partitioning column. Pruning is specified for a range of partitions, and the
relevant partitions for the query are all the partitions between the first and the last
partition of that range. Partitioning is an extra layer of the data dictionary between
Tables/Indexes and Tablespaces.

Tablespace

Partition

Table/Index

Partition-wise Joins

Partitioning can improve the performance of multi-table joins, if the tables are
partitioned on the join key. Partition-wise joins break larger joins into smaller joins
that occur between each of the partitions, completing the overall join in less time
and providing performance benefits for both serial and parallel execution.

Database Partitioning for Oracle E-Business Suite Page 8

WHY PARTITION?

There are a number of benefits that partitioning can bring in the area of
performance and in terms of manageability, availability, administration, and physical
organization.

Partitioning improves the manageability,
performance, and availability of a

partitioned object.

Table Availability/Improved Manageability

Partitioning can significantly reduce recovery times of key transaction tables by
recovering the current partitions first. Table manageability, backup, restore, and
rebuild can be performed at the partition level, as can index rebuilds. Partition
aware operations such as MOVE, EXCHANGE, REBUILD can be used without
affecting other active partitions.

Performance – The Need for Speed

When deciding its access path, the CBO automatically prunes unnecessary
partitions and restricts access to only those necessary to fulfill the operation.
Partitioning improves the access path of queries, as the majority of transactions will
normally only reference current data. As the optimizer is partition aware, joins in
SQL statements also benefit from pruning. Parallel operations also benefit from
partitioning as they can occur at the partition level.

Within the Oracle E-Business Suite, partitioning can improve the performance of
heavy batch jobs and upgrade performance, thus leading to reduced upgrade times
and reduced system downtime. As the CBO is partition aware given certain
conditions, the CBO can eliminate partitions that are not needed by the SQL
statement and thus improves the performance for customers who typically run
large batch jobs such as the Order Management (OM) Import Process and Payables
(AP) Invoice Import.

Physical Organization & Reduction in Total Cost of Ownership (TCO)

Partitioning allows you to organize your data across different devices and therefore
you can categorize your data in terms of need and hold data that is less frequently
accessed on cheaper storage devices.

Understanding the growth and appropriate partitioning means that you have
improved control over your data, resulting in a reduction of the total cost of
ownership. Partitioning allows you to segregate your data and move your historic
data to lower-cost storage. This is discussed in more detail in a separate paper
entitled Archiving, Purging and ILM for Oracle E-Business Suite.

Database Partitioning for Oracle E-Business Suite Page 9

PARTITIONING CONCEPTS

Partition Key
The partition key is a set of one or more columns that determines in which
partition a row will reside. It follows that each row in a partitioned table must
reside in a single partition. The Oracle database automatically ensures, the correct
location of a row based on its partition key. The location is automatically
maintained as part of insert, update and delete operations. The following list
specifies attributes for a partition:

At the heart of partitioning lies the concept
of a partition key; this key determines in

which partition a particular row will reside.
The location of a row is maintained by the

Oracle database.

• Consists of an ordered list of up to 16 columns

• Can contain columns that are NULLABLE

• Cannot contain a LEVEL, ROWID, or MLSLABEL pseudo column or a
column of type ROWID

Table Partitions
In Oracle 10g, a table can have a maximum of 1 million partitions. With the
exception of tables containing columns of LONG or LONG RAW datatypes, all
tables can be partitioned (including columns of type CLOB or BLOB).

THE EVOLUTION OF PARTITIONING
Partitioning has been included with the Oracle database, since Oracle 8.0 and has
been enhanced with each release of the Oracle database. New partitioning methods
and features have been added. The following table shows a synopsis of the main
changes.

Partitioning is now in it’s 8th generation
with Oracle 11g and in every major release

of the database the partitioning
functionality is being enhanced, by either

adding new partitioning techniques,
enhancing the scalability or extending

manageability and maintenance
capabilities.

Oracle 8.0

Partitioned Tables and Indexes
Range partitioned tables
Local partitioned indexes
Global Range partitioned indexes
Partition Pruning

Oracle 8i Hash and Composite range-hash partitioned tables
Range partitioned index-organized tables

Oracle 9i List partitioned tables
Hash partitioned index-organized tables

Oracle 9iR2 Composite Range-list partitioned tables
List partitioned index-organized tables

Oracle 10g Global hash partitioned indexes

Oracle 11g

Composite Partitioning
Range-Range, Range-List, Range-Hash
List-List, List-Range, List-Hash
Interval-Range, Interval-List, Interval-Hash
REF Partitioning, Virtual Column based partitioning

Database Partitioning for Oracle E-Business Suite Page 10

PARTITIONING & THE ORACLE E-BUSINESS SUITE
Currently, several products in the Oracle E-Business Suite utilize partitioning in the
base product, including; Advanced Planning and Scheduling, Oracle Payables (Trial
Balance), Projects Resources, Workflow, Directory Services (Runtime tables), Daily
Business Intelligence, HR (Employee Directory) and Engineering.

Several products in the Oracle E-Business
Suite utilize partitioning in the base

product. Partitioning doesn’t require any
change to your Oracle E-Business Suite

application code.

As stated earlier, partitioning is implemented at the database level and therefore no
modification should be required to any product code to take advantage of its
benefits. All that is normally required is to convert an existing non-partitioned table
to a partitioned table; the same idea also applies to indexes.

Frequently Asked Questions: Using Database Partitioning with the
Oracle E-Business Suite
A common question asked is, "Can I use the database partitioning feature in my
Oracle E-Business Suite environment?" The answer is yes: the use of custom
partitioning with the Oracle E-Business Suite is fully supported. However, if an
incorrect partitioning strategy is chosen, partitioning can degrade performance, this
is discussed in more detail in the second part of this paper. In addition, several
Oracle E-Business Suite modules take advantage of partitioning straight out of the
box.

What Does "Fully Supported" Mean?

If custom partitioning causes a particular Oracle E-Business Suite flow or
transaction to fail with standard Oracle E-Business Suite product code, it is
considered a product defect. Since the Oracle E-Business Suite is committed to
being transparent to custom partitioning. Oracle Development will create patches
or workarounds for all reported issues with standard Oracle E-Business Suite
product code.

What Is Custom Partitioning?

Custom partitioning applies when an existing Oracle E-Business Suite product table
is not partitioned and the table is redefined as a partitioned table by one of the
following approaches:

1. Using a range, list, hash or composite partitioning method.

2. The partition scheme and/or partitioning method of an existing standard
product table, which is already partitioned (as part of the standard product),
is altered from that included in the base product.

Further information can be found at the following URL:
http://blogs.oracle.com/schan/2006/11/17

Database Partitioning for Oracle E-Business Suite Page 11

http://blogs.oracle.com/schan/2006/11/17

Examples of Custom Partitioning

An example of custom partitioning would be choosing to partition the table
OE_ORDER_LINES_ALL which is currently not partitioned in the standard
product.

Another example of custom partitioning would be changing the partition key or
partition method used by an existing partitioned table as shipped in the base
product. For example, changing the partition key of the table
WF_ITEM_ACTIVITY_STATUSES, which is already partitioned by the column
ITEM_TYPE and sub-partitioned by ITEM_KEY.

Example of Creating a Partitioned Table

All that is required is the partition clause needs to be included, as part of
the create table command. This is shown in the following example:

CREATE TABLE GL_PERIODS
(PERIOD_SET_NAME NOT NULL,
PERIOD_NAME NOT NULL,
LAST_UPDATE_DATE NOT NULL,
LAST_UPDATED_BY NOT NULL,
START_DATE NOT NULL,
END_DATE NOT NULL,
PERIOD_TYPE NOT NULL,
PERIOD_YEAR NOT NULL,
PERIOD_NUM NOT NULL,
QUARTER_NUM NOT NULL,
ENTERED_PERIOD_NAME NOT NULL,
ADJUSTMENT_PERIOD_FLAG NOT NULL,
CREATION_DATE
CREATED_BY
LAST_UPDATE_LOGIN
DESCRIPTION
ATTRIBUTE1
ATTRIBUTE2
ATTRIBUTE3
ATTRIBUTE4
ATTRIBUTE5
ATTRIBUTE6
ATTRIBUTE7
ATTRIBUTE8
CONTEXT
YEAR_START_DATE
QUARTER_START_DATE
)
PARTITION BY RANGE (PERIOD_NAME)
(
PARTITION jan04_per VALUES LESS THAN (‘JAN-2005’),
PARTITION feb04_per VALUES LESS THAN (‘FEB-2005’)
. . .
. . .);

TABLE PARTITIONING STRATEGY
The four partitioning strategies available for partitioning tables, within the Oracle
database, are as follows:

There are several partitioning strategies
available. The strategy chosen to partition
a table depends on the data distribution of

the table and access methods. • Range

• List

• Hash

Database Partitioning for Oracle E-Business Suite Page 12

• Composite

General Syntax - A partitioned table declaration contains following elements:

• The physical structure of the table

• The partition structure, which defines the partition key

There are four different types of partitioning methods, these are declared in the
PARTITION BY clause part of the create table command. Composite
partitioning is limited to being a RANGE partition on the top level and HASH
partitioning on a sublevel.

Multicolumn Partition Key

It is possible for a table to have a partition key that consists of several columns,
which is analogous to composite column indexes. The exception is list partitions
where a static list of literals is used; this will be covered later in the section titled:
Multicolumn Partitioning.

Table Type

Partitioning can be applied to normal Heap Organized tables and to Index
Organized Tables (IOT). An IOT cannot be list-partitioned. Clustered tables
cannot be partitioned. Materialized Views (snapshots) can be partitioned.

Heap Organized Tables

Heap organized tables are the most common type of tables that are used, where
data is stored as an unordered collection (heap). Typically, as data is added, it will
be placed in the first free space found in the segment that can fit the data. As data
is removed from the table, it allows space to become available and reused by
INSERT and UPDATE statements.

Index Organized Tables

Internally within index organized tables, the table is stored as an index structure,
where data is stored according to the primary key. There are several performance
benefits to using index organized tables, such as reduced storage and faster access
to table rows, by the primary key. As rows are stored in primary key order, range
access by the primary key involves minimum block accesses. Performance can
further be enhanced, by moving infrequently accessed non-key columns, from the
B-Tree leaf block to an optional overflow storage area. This has the benefit of
faster access to frequently accessed columns. Internally, this causes a reduction in
size, which then results in a smaller B-Tree and therefore faster access.

As you would expect, there are a complete set of SQL commands for managing
partitioning including adding, dropping, splitting, and merging partitions.

Database Partitioning for Oracle E-Business Suite Page 13

Range Partitioning
Range partitioning was introduced in Oracle 8. Rows are identified by a "partition
key", which then determines the partition to which the row belongs. Each
partition’s end point is specified using: VALUES LESS THAN (value-list). The
value-list must correspond in type and position to the partition key. The values in
the value list are a static list of non-inclusive literals.

Range partitioning should be considered
where data is based on consecutive

ranges of values.

Range partitioning is useful for tables in the Oracle E-Business Suite, but the
partition key needs to match the access predicate (access path key). This makes it
possible to map rows to partitions, based upon ranges of column values. For
example, we could range partition the table AP_INVOICES_ALL by using the
INVOICE_ID column, as the partitioning key.

However, it is not always possible to predict how much data will map into a given
range. In some cases, sizes of partitions may differ quite substantially, resulting in
sub-optimal performance for certain operations, like parallel DML.

The partition key consists of any columns from the table, within the data type
restrictions. When creating a table using range partitioning you will need to specify:

• Partitioning Method: Range

• Partition Columns

• Partitions: Identifying the partition boundaries

Another example of range partitioning would be to partition GL_BALANCES by
the column PERIOD_NAME.

Example creation script

CREATE TABLE GL_BALANCES
(SET_OF_BOOKS_ID NUMBER(15) NOT NULL,
CODE_COMBINATION_ID NUMBER(15) NOT NULL,
CURRENCY_CODE VARCHAR2(15) NOT NULL,
PERIOD_NAME VARCHAR2(15) NOT NULL,
ACTUAL_FLAG VARCHAR2(1) NOT NULL,
BUDGET_VERSION_ID NUMBER(15),
LAST_UPDATE_DATE DATE NOT NULL,
.
)
PARTITION BY RANGE (PERIOD_NAME)
(
PARTITION jan04_per VALUES LESS THAN (‘JAN-2005’),
PARTITION feb04_per VALUES LESS THAN (‘FEB-2005’)
. . .
. . .
);

In this example, the majority of the SQL that accesses this table will use the
condition PERIOD_NAME in the query, which will effectively map to one of the
partitions.

Summary:

Range partitioning is suitable when one or more of the following conditions apply:

Database Partitioning for Oracle E-Business Suite Page 14

• There is a rolling window of data

• There are tables are frequently accessed using a range predicate on a suitable
partitioning column. If using this approach the optimizer prunes unnecessary
partitions.

List Partitioning
Unlike range partitioning, list partitioning, which was introduced in Oracle 9i, gives
you complete control over how rows map to specific partitions by specifying a list
of static values, as the description of the partitioning key. List partitioning does not
support multi-column partition keys and therefore can only consist of a single
column. The advantage of this kind of partitioning is that it allows you to group
unorganized and unrelated sets of data together. The partition key values are
specified with VALUES (value-list) clause.

List partitioning gives you complete
control as it allows you to map your rows

to specific partitions. Typically this
partitioning strategy is used when the

partitioning criteria is an unordered list of
values.

The partition key can be any single column from the table, within the data type
restrictions. All values of the partition key for a partition must be listed as literals.
There is no “other” values clause.

NULL can be specified as a value. Any literal or NULL values must only appear
once.

When creating list partitions you specify the following:

• Partitioning Method: List

• Partitioning column

• Partition description: A set of literal values, which determines if a row is in
the partition or not

Index Only Tables (IOTs) cannot be list partitioned.

An example this type of approach is partitioning the OE_ORDER_LINES_ALL
table by OPEN_FLAG, where open orders and closed orders are the partition
names.

Example creation script

CREATE TABLE OE_ORDER_LINES_ALL
(LINE_ID NUMBER NOT NULL,
ORG_ID NUMBER,
HEADER_ID NUMBER NOT NULL,
LINE_TYPE_ID NUMBER NOT NULL,
LINE_NUMBER NOT NULL NUMBER
ORDERED_ITEM VARCHAR2(2000),
OPEN_FLAG VARCHAR2(1) NOT NULL,
.
)
PARTITION BY LIST (open_flag)
(
PARTITION open_orders VALUES (‘Y’),
PARTITION closed_orders VALUES (‘N’)
);

Database Partitioning for Oracle E-Business Suite Page 15

Summary

List partitioning specifically maps rows to partitions based on a static list of literal
values. The partition key for list partitioning can only be based on a single column.

Hash Partitioning
Hash partitioning used a hashing

algorithm to decide the physical placement
of data. Hash partitioning will distribute

data evenly across a fixed number of
partitions. Typically, this partitioning

strategy will be used when there is no
clear partitioning criteria.

Hash partitioning, which was introduced in Oracle 8i, uses a hashing algorithm that
is applied to the partitioning key to stripe data into different partitions. Hash
partitioning controls the physical placement of data across a fixed number of
partitions. The hashing algorithm evenly distributes rows amongst partitions,
making each approximately the same size. Hash partitioning is the ideal method for
distributing data evenly across devices.

Hash partitioning is an easy-to-use alternative to range partitioning when data does
not follow the classic historical pattern and there is no obvious partitioning key.
There are two drawbacks to hash partitioning which are as follows:

• Hash partitioning only utilizes partition pruning on equality predicates, i.e.
equality and IN lists.

• Range queries will not be suitable for use with hash-partitioned tables.

Generally, this method of partitioning is useful for Oracle E-Business Suite batch
programs using parallel workers where block contention is significant a typical
example would be interface import program.

When creating hash partitions you specify the following:

• Partitioning Method: Hash

• Partitioning column(s)

• Number of partitions or individual partition descriptions

An example this type of approach is partitioning the table
OE_ORDER_LINES_ALL by the primary key, LINE_ID.

CREATE TABLE OE_ORDER_LINES_ALL
(LINE_ID NUMBER NOT NULL,
ORG_ID NUMBER,
HEADER_ID NUMBER NOT NULL,
LINE_TYPE_ID NUMBER NOT NULL,
LINE_NUMBER NOT NULL NUMBER
ORDERED_ITEM VARCHAR2(2000),
OPEN_FLAG VARCHAR2(1) NOT NULL,
.
)
PARTITION BY HASH (LINE_ID)
PARTITIONS 8
. . .
. . .;
);

Summary:

Hash partitioning is suitable when there is no natural partition key for your table, or
the data doesn’t follow any business view or logical view. Hash partitioning offers

Database Partitioning for Oracle E-Business Suite Page 16

some of the performance benefits of range partitioning. Additionally, it makes use
of partition pruning and partition-wise joins based upon the partition key.

If you want to avoid data skew amongst partitions, hash partitioning allows data to
be mapped evenly to a number of partitions and this will maximize I/O
throughput. However, this method is not suitable for historic data.

Hash partitioning, minimizes block contention for batch processing there by
increasing scalability.

Composite Partitioning
Composite partitioning, as the name suggests, partitions tables using a combination
of range and hash or list partitioning. However, there is a limit to the combination
of partitioning methods that you can use together. Only range-partitioned tables
can be sub-partitioned, therefore the only possible choices for composite
partitioning methods are range-hash or range-list.

Composite partitioning is based upon a
combination of the previously described

partitioning strategies of Range, List, and
Hash Partitioning.

The composite partitioning method of range-hash combines the best of both
worlds by allowing logical groupings at the partition level and handling data skew
within the sub-partitions.

Using composite partitioning, the database would first distribute data into partitions
according to the limits, established by the first method of partitioning, i.e. by range.
Depending on the secondary method of partitioning used:

• Range-hash partitioning: Database uses a hashing algorithm to further divide
the data into sub-partitions within each partition range.

• Range-list partitioning: Database divides the data into sub-partitions. Each
range is partitioned, based on an explicit list specified. It follows that the
secondary method of partitioning will be less specific and not be range
orientated.

The subpartition partition key, can be the same as, or different to the range
partition key.

When creating range-hash partitions you specify the following:

• Partitioning Method: Range

• Partitioning column(s)

• Boundary of partition

• Subpartitioning method: Hash

• Subpartitioning column(s)

• Number of subpartitions for each partition

The following example shows how to partition the
WF_ITEM_ACTIVITY_STATUSES table using composite partitioning (range
and hash).

Database Partitioning for Oracle E-Business Suite Page 17

create table wf_item_activity_statuses
…
partition by range (item_type)
subpartition by hash (item_key)
subpartitions 8
 (partition wf_item1 values less than ('A1'),
 partition wf_item2 values less than ('AM'),
 partition wf_item3 values less than ('AP'),
 partition wf_item4 values less than ('AR'),
 partition wf_item5 values less than ('AZ'),
 . . .
 partition wf_item48 values less than ('OE'),
 partition wf_item49 values less than ('OF'),
 partition wf_item50 values less than ('OK'),
 partition wf_item51 values less than ('OL'),
 . . .
 partition wf_item56 values less than ('PO'),
 partition wf_item57 values less than ('PQ'),
 partition wf_item58 values less than ('PR'),
 partition wf_item59 values less than ('QA'),
 . . .);

Summary:

Composite Range-Hash partitioning is suitable for the following::

• Historical data and cases using composite partitioning method, where the
leading key has a small number of distinct values and the second key has a
high number of distinct values.

• Consider an example where the table WF_ITEM_ACTIVITY_STATUSES
has a composite key based upon ITEM_TYPE and ITEM_KEY. This table is
generally accessed by ITEM_TYPE, which has a low number of distinct
values (NDV). Typically customers will only have 5 or fewer ITEM_TYPES.
However, when combined with the ITEM_KEY column, which has a high
number of distinct values and selectivity, the partitioning key efficiency
improves and results in the best of both partitioning methods.

Multicolumn Partitioning
In certain cases, you may need a higher degree of granularity in your partition key,
which is typically provided by the trailing columns in the partition key. For range
and hash partitioned tables you can specify up to 16 partition key columns. When
deciding in which partition to place a particular row, the database will only use the
next column that makes up the partition key if it can’t uniquely identify a single
destination partition from the first key column. The database doesn’t evaluate all
the columns in the partition key when deciding in which partition to place a row.

Multicolumn partitioning should be used
when the partitioning key is composed of

several columns, where later columns give
a higher degree of granularity then

previous columns. An applicable scenario
would be for example if you wanted to

decompose a country by region or state.

INDEX PARTITIONING METHODS
The partitioning of indexes offers the same benefits in terms of manageability and
performance as that of partitioned tables. The rules for partitioning indexes are
similar to those for tables. Several different methods are available for partitioning
indexes, these are as follows:

The rules for partitioning indexes are
similar to those for tables and you can mix

partitioned and nonpartitioned indexes
with partitioned and nonpartitioned tables.

• Local (inherits same partitioning method as table)

• Global (Hash, Range)

Database Partitioning for Oracle E-Business Suite Page 18

• Prefixed

• Nonprefixed

Indexes can be of different types: B*Tree, Bitmap, Bitmap Join, and Function-
Based indexes. The index types are independent of the index partition method. All
index types can be partitioned, but some restrictions apply. For example, a bitmap
index cannot be global partitioned, it must be local to the partitioned table.

Indexes can be partitioned or non-partitioned and can be used with a partitioned or
non-partitioned table. It should be noted that when we do partition an index, each
partition is a completely separate index. The information is stored in that partition’s
index and as such, there is no master index or larger super index to refer to.

Local Indexes: A local index on a partitioned table is made where the index is
partitioned in the exact same manner as the underlying partitioned table; i.e. the
local index inherits the partitioning method of the table. This is known as
equipartitioning. Each partition of a local index corresponds to one and only one
partition of the underlying table. For example, if we partitioned the table
AP_INVOICES_ALL using range partitioning on the INVOICE_ID column, it
follows that any local indexes would also be partitioned automatically by the
database using the same partition key.

Global Partitioned Indexes: A global partitioned index is an index on a
partitioned or non-partitioned table which is partitioned independently; i.e., using a
different partitioning-key from the table. Global-partitioned indexes can be range
or hash partitioned. For example, we could range-partition the table
GL_BALANCES using the SET_OF_BOOKS_ID column. We could then create a
global index on this table, that could be range-partitioned using a different
partitioning key, e.g. CODE_COMBINATION_ID.

Global Non-Partitioned Indexes: A global non-partitioned index is essentially
identical to an index on a non-partitioned table. The index structure is not
partitioned.

These types of indexes can be sub-divided into two further categories, prefixed and
non-prefixed. Here also, there are restrictions on the combination of index type and
partitioned type allowed; these are discussed later in this paper.

Automatically Maintaining Indexes

As a result of running a table maintenance operation on a partitioned table (for
example, merging two adjacent partitions), the corresponding indexes/index
partitions get marked as UNUSABLE (for global indexes).

In Oracle 10g, using the ALTER TABLE command and specifying the UPDATE
INDEXES clause forces the database to override this behavior and updates the
index at the same time as it executes the maintenance operation. There are several
advantages of using this clause, including having the index remaining highly
available. The index can be used to access partitions that are not impacted by the

Database Partitioning for Oracle E-Business Suite Page 19

table maintenance operation. From a maintenance point of view, each index does
not have to be rebuilt individually and the index is updated at the same time as the
base table.

Global Partitioned Indexes
A global partitioned index is an index on a
partitioned or non-partitioned table, which

is partitioned independently i.e. using a
different partitioning-key from the table.

Global-partitioned indexes can be
partitioned using range or hash

partitioning.

Global partitioned indexes are flexible, in that they allow you to pick a partitioning
method that is different from that of the table. There is no required relation
between the table and index partitioning method. Global partitioned indexes can
also be used on nonpartitioned tables. Currently global partitioned indexes can be
either range or hash partitioned. It therefore follows that the index key in a global
partitioned index will refer to rows stored in more than one table partition.

Prefixed and Non-prefixed Indexes

Global partitioned indexes can be either prefixed or non-prefixed. This is not an
attribute that you specify, but rather a consequence, of the index key column and
partition key column matching.

A global partitioned index is prefixed, if the partition key is the leading index key.
Global prefixed partitioned indexes can be unique or non-unique.

A global partitioned index is non-prefixed, if the leading index key is not the same
as the table partition key.

Only B*Tree indexes can be created on global partitioned tables.

Maintaining Global Partitioned Indexes

Almost every attribute of a partitioned table or index is alterable after the table or
index has been created and populated. This is different from altering a
nonpartitioned table or index. Changes to a table’s logical properties, such as the
number and types of data columns, can be made to partitioned as well as
nonpartitioned tables, with the same syntax. The partition’s logical property, for
example, the name, can also be altered.

Individual partitions can be exchanged, moved, truncated, or dropped, affecting the
data within the partition.

Physical properties of a partition, such as the storage attribute can be altered. For
some attributes the partition must be moved for the changes to take effect. The
table or index’s partition key definition can be altered by adding, dropping,
merging, or splitting partitions (of the table) or index. However, this may affect the
data within existing partitions.

Global partitioned indexes are harder to maintain than local indexes, however they
do offer an efficient access method to any individual record. During table or index
interaction during partition maintenance, all partitions in a global index will be
affected. This is because, when the underlying table partition has any of the
following maintenance operations applied to it: SPLIT, MOVE, DROP, or

Database Partitioning for Oracle E-Business Suite Page 20

TRUNCATE, both global indexes and global partitioned indexes will be marked as
unusable. It therefore follows that it is not possible for partition independence to
occur for global indexes

Depending on the type of operation performed on a table partition, the indexes on
the table will be affected. When altering a table partition you can use the UPDATE
INDEXES clause; this automatically maintains the affected global indexes and
partitions. The advantage of using this command is that the index will remain
available and online throughout the operation and therefore prevent any
unnecessary interruption to the users. Furthermore, indexes do not have to be
rebuilt once the operation has completed.

If a table partition is recovered to a point in time, the index must be recovered to
the same point. You also need to recreate the entire global index otherwise the
index entries will be scattered across partitions.

Maintaining Global Hash Partitioned Indexes

Global hash partitioned indexes are a new feature in the Oracle 10g database. They
offer better performance by reducing contention when the index is right growing
(most of the index insertions occur only on the right edge of an index.). This is due
to the index entries having a hashing algorithm applied to them. This algorithm will
evenly spread index entries over multiple partitions, which in turn spreads the
contention over multiple partitions. An example of a right growing index is an
index based on a sequence value. For example in the table
OE_ORDER_LINES_ALL, the OE_ORDER_LINES_U1 index is based on the
column LINE_ID. The value for LINE_ID comes from a sequence. Global hash
partitioned indexes are useful in scenarios where there are is a low number of index
leaf blocks accessed.

Local Partitioned Indexes
Global partitioned indexes can be defined on a non-partitioned table; however,
local indexes must be defined on partitioned tables. For local indexes, the index
keys within the index will refer only to the rows stored in the single underlying table
partition. A local index is created by specifying the LOCAL attribute and can be
created UNIQUE or NONUNIQUE. The table and the local index are partitioned in
exactly the same manner or have the same partition key. Local indexes can only be
unique if the partition key is part of the index key. By enforcing this restriction, the
database ensures that the rows with the exact same index key will always map to the
same partition.

A local index on a partitioned table is
partitioned using the same method as

used by the underlying partitioned table;
i.e., the local index inherits the partitioning

method of the table, which is know as
equipartitioning.

The term equipartitioning refers to the concept of having each local partitioned index
associated with exactly one partition of the table.

Local indexes are much easier to maintain than other types of partitioned indexes
and offer greater availability as the local indexes are automatically maintained. The
Oracle database ensures that the index partitions are synchronized with their

Database Partitioning for Oracle E-Business Suite Page 21

corresponding table partitions. It follows that the Oracle database automatically
maintains the index partition whenever any kind of maintenance operation occurs
on the underlying tables, such as when partitions are added, dropped, or merged .
This enables each table-index pair to be independent; and therefore any actions that
make one partition's data invalid or unavailable only affects a single partition.

Local Prefixed & Non-Prefix (Partitioned Indexes)

Local prefixed indexes can be unique or nonunique and can be specified against all
four table partition types.

A local index is prefixed if the partition key of the table and the index key are the
same; otherwise it is a local non-prefixed index. For example, if the
AP_INVOICES_ALL table is partitioned on the column INVOICE_ID. If we
create a local index AP_INVOICES_L1 on this partitioned table, having it’s index
key as the (INVOICE_ID, SUPPLIER_ID) columns. The index
AP_INVOICES_L1 is local prefixed as the leading column and the partition key
match. On the other hand, if the AP_INVOICES_L1 index is defined on column
INVOICE_DATE, then it is a non-prefixed local index. Generally, the need for non-
prefixed local indexes will not arise in the Oracle E-Business Suite.

Global Nonpartitioned Indexes

Global nonpartitioned indexes, offer the same efficient access to any individual
record in any partition and behave just like a non-partitioned index. Since the index
structure is not partitioned, the index is available to all partitions. A scenario where
this type of index would be useful is with a query that does not include the partition
key of the table as a filter, but you still want the optimizer to use an index.

Consider the case where the referenced column was as part of the join predicate
and had a global index created on it. For example, partition the GL_BALANCES
table using the PERIOD_NAME column and create a global nonpartitioned index
on the column CODE_COMBINATION_ID. You would want a SQL statement
that uses this column as a join predicate to use the CBO to make use of this index.

Performance Considerations regarding Prefixed and Nonprefixed Indexes

Before deciding between a prefixed or nonprefixed index, it is worth considering its
usage, by defining exactly how the table is accessed. You also need to consider how
you expect the optimizer to behave if you use one these types of indexes. For
example, is the index likely to be used by end-users transactions, or as part of a
large batch program? In either case, choosing the wrong index prefix method could
result in poor performance due to the additional overhead of using or maintaining
an additional index.

The optimizer can make use of partition pruning, if we have a prefixed (local or
global) index and we are using a predicate that is part of the index column. By
doing this we are restricting the application of the predicate to a subset of index
partitions. With a nonprefixed index, the database will have to apply a predicate,

Database Partitioning for Oracle E-Business Suite Page 22

involving the index column to all index partitions. This is required to look up a
single key, or to do an index range scan. Note that if there is also a predicate on the
partitioning column(s), multiple index probes may not be required due to the local
index being equipartitioned with the underlying table. In this case, the database will
simply prune the partitions based on the partition key.

Summary
The following index partition methods are available:- The Oracle database has a rich set of

techniques for partitioning indexes, so that
they can be optimally applied in any

business environment.

• Global Non-partitioned (prefixed)

Use Global Non-partitioned indexes for all indexes, which are not prefixed by
the table partition key.

• Global Range Partitioned (prefixed)

• Global Hash Partitioned (prefixed) – introduced in 10g

Extremely useful for right-growing indexes experiencing contention due to
high levels of concurrency.

Allows the index to be partitioned without affecting the table.

• Local Partitioned Prefixed

Use in place of indexes which already contain the partition key as a prefix.

• Local Partitioned Non-Prefix

Should only be used when all the queries, using the local (non-prefixed)
index, always include the partition key filter.

Maintenance of Partitioned Tables & Indexes
There are number of different kind of maintenance operations for partitions and
subpartitions that can be performed on tables and indexes. For example:

Oracle provides a comprehensive set of
SQL commands for managing partitioned

tables and indexes, which includes
commands for adding new partitions,

dropping, truncating, splitting, merging,
moving and compressing partitions.

• Merging two partitions together or adding new partitions to a table

• Dropping unused partitions or partitions containing historical data that is no
longer required; or splitting or adding partitions if new partition key values
are added

Within the alter table command, there are a number of clauses that let you
achieve this:

ADD (HASH), COALESCE (HASH), DROP, EXCHANGE, MERGE,
MOVE, SPLIT, TRUNCATE

It is important to understand which partition maintenance operations are allowed
with the different table and index partitioning methods. These are summarized in
the next section of this paper.

Database Partitioning for Oracle E-Business Suite Page 23

Partition Maintenance Operations and Table Partitioning Methods

Table: ALTER TABLE Clause for Maintenance Operations of Table Partitions

Operation

Description

Range

Hash

List

Composite:
Range/Hash

Composite:
Range/List

Adding
Partitions

To add a new partition after the highest
partition.

ADD
PARTITION

ADD

PARTITION

ADD

PARTITION

ADD
PARTITION
MODIFY

PARTITION
... ADD

SUBPARTITION

ADD
PARTITION
MODIFY

PARTITION
... ADD

SUBPARTITION
Coalescing
partitions

Reduces the number of partitions in a table
or index by redistributing contents into one
or more remaining partitions as determined
by the hash function.

n/a

COALESCE
PARTITION n/a

MODIFY
PARTITION

... COALESCE
SUBPARTITION

n/a

Dropping
partitions

Drops a partition for a given table.
DROP

PARTITION n/a DROP
PARTITION

DROP
PARTITION

DROP
PARTITION

DROP
SUBPARTITION

Exchanging
Partitions

To change a partition into a non-partitioned
table and vice versa. Useful when want to
convert non-partitioned tables to partitioned
table.

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION
EXCHANGE

SUBPARTITION

EXCHANGE
PARTITION
EXCHANGE

SUBPARTITION

Merging
Partitions

Merges the contents of two partitions into
one partition. The two original partitions are
dropped, as are any corresponding local
indexes. Not used for hash-partitioned table.

MERGE
PARTITIONS n/a MERGE

PARTITIONS
MERGE

PARTITIONS

MERGE
PARTITIONS

MERGE
SUBPARTITION

S
Modifying
Default
Attributes

This command allows you to modify the
storage parameters of all partitions. Note:
The new attributes affect only
future partitions.

MODIFY
DEFAULT

ATTRIBUTES

MODIFY
DEFAULT

ATTRIBUTES

MODIFY
DEFAULT

ATTRIBUTES

MODIFY
DEFAULT

ATTRIBUTES
MODIFY
DEFAULT

ATTRIBUTES
FOR

PARTITION

MODIFY
DEFAULT

ATTRIBUTES
MODIFY
DEFAULT

ATTRIBUTES
FOR

PARTITION
Modifying Real
Attributes of
Partitions

Allows the modification of existing
attributes of a table or index; e.g., moving an
existing partition to a new tablespace.

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION
MODIFY

SUBPARTITION

MODIFY
PARTITION
MODIFY

SUBPARTITION

Modifying List
Partitions:
Adding Values

More literal values can be added to the
defining value list, that establishes what the
partition key is.

n/a n/a
MODIFY

PARTITION...
ADD VALUES

n/a

MODIFY
SUBPARTITION

...
ADD VALUES

Modifying List
Partitions:
Dropping
Values

Removal of literal values can be added to
the defining value list, that establishes what
the partition key is. n/a n/a

MODIFY
PARTITION...
DROP VALUES

n/a

MODIFY
SUBPARTITION

...
DROP VALUES

Moving
Partitions

Allows you to move a partition to another
tablespace, store data in a compressed
format using table compression.

MOVE
PARTITION

MOVE
PARTITION

MOVE
PARTITION

MOVE
SUBPARTITION

MOVE
SUBPARTITION

Renaming
Partitions

Renaming of partitions and sub-partitions of
tables and indexes. Allows you to give a
more meaningful name rather than using the
system generated ones.

RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION
RENAME

SUBPARTITION

RENAME
PARTITION
RENAME

SUBPARTITION

Splitting
Partitions

Redistributes the contents of a partition into
two new partitions for example when a
partition gets too large.

SPLIT
PARTITION n/a SPLIT

PARTITION
SPLIT

PARTITION

SPLIT
PARTITION
SPLIT

SUBPARTITION
Truncating
Partitions

Removes all rows from a table partition, but
the physical partition is still kept. The same
logic only applies to local indexes due to
equipartitioning.

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION
TRUNCATE

SUBPARTITION

TRUNCATE
PARTITION
TRUNCATE

SUBPARTITION

Database Partitioning for Oracle E-Business Suite Page 24

Partition Maintenance Operations and Index Type/Partitioning Methods

Table: ALTER INDEX Clause for Maintenance Operations of Table Partitions

Operation Index Type Range Composite: Hash and List Composite: Range/List
Adding Index Partitions

Global - ADD PARTITION (hash only) -

 Local n/a n/a n/a
Dropping Index Partitions

Global DROP PARTITION - -

 Local n/a n/a n/a
Modifying Default Attributes of
Index Partitions

Global MODIFY DEFAULT
ATTRIBUTES

- -

 Local MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT ATTRIBUTES
MODIFY DEFAULT ATTRIBUTES FOR
PARTITION

Modifying Real Attributes of Index
Partitions

Global MODIFY PARTITION - -

 Local MODIFY PARTITION MODIFY PARTITION MODIFY PARTITION
MODIFY SUBPARTITION

Modifying Real Attributes of Index
Partitions

Global MODIFY PARTITION - -

 Local MODIFY PARTITION MODIFY PARTITION MODIFY PARTITION
MODIFY SUBPARTITION

Rebuilding Index Partitions

Global REBUILD PARTITION - -

 Local REBUILD PARTITION REBUILD PARTITION REBUILD SUBPARTITION

Renaming Index Partitions

Global RENAME PARTITION - -

 Local RENAME PARTITION RENAME PARTITION RENAME PARTITION
RENAME SUBPARTITION

Splitting Index Partitions

Global SPLIT PARTITION - -

 Local n/a n/a n/a

Additional Information:
Please refer to Oracle® Database Administrator's Guide 10g Release 2 (10.2)
Chapter: 17– Managing Partitioned Tables & Indexes for additional information.

Partitioning can only change the way data is organized and accessed, but it cannot
reduce the physical size of tables in a database. It can only change the logical view
of the tables so that only those database records are accessed that are applicable to
a transaction.

TABLE COMPRESSION
Table compression is a database feature that was introduced in Oracle 9iR2. When
using compression, it is possible to compress some or all of the partitions that
belong to a particular table; i.e., table compression can also be specified at the
partition level.

Using the compression feature of the
Oracle database, an entire table can be

compressed or specific partitions
belonging to a table can be compressed.
B-tree indexes can also be compressed

using a technique known as key
compression.

Some or all of the partitions of a B-Tree index can also be compressed using key
compression. Key compression is applicable only to B-Tree indexes. Bitmap
indexes are stored in a compressed manner by default. The benefit of using key

Database Partitioning for Oracle E-Business Suite Page 25

compression is that it eliminates the repeated occurrences of key column prefix
values and this has the added benefit of saving storage space and reducing I/O.

The Oracle database compresses data by removing duplicate values in a data block.
The compression algorithm maintains a symbol table of commonly used values per
column at the beginning of the data block and all duplicate values are replaced with
a short reference to the symbol table. The compression ratio increases
proportionally to the number of duplicate column values in each block. Each data
block can have different levels of compression and given the nature of the data, not
all tables will have good compression ratios. Therefore, some degree of analysis
needs to be done before deciding whether to compress a table or not in a
production instance. The compression algorithm guarantees that compression will
never increase the size of the existing table.

There are some restrictions when it comes to compressing tables, such as data is
only compressed during bulk operations/direct path inserts. Compression is
suitable more for read-only data or where rows are rarely updated. Internally, data
has to be uncompressed to be updated and then recompressed, which results in a
small CPU overhead. Table compression may improve query performance by
reducing disk I/O and memory use in the buffer cache. For example, you can
compress partitions containing data to keep it on-line for longer.

Not all DDL/DML commands are supported on compressed tables. In Oracle
9iR2 adding a column to a compressed table results in an error, but this has been
allowed in Oracle 10g. The following session extract shows an example of the
problem.

SQL*Plus: Release 9.2.0.6.0 - Production on Fri Apr 6 10:50:32 2007

Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.

Connected to:
Oracle9i Enterprise Edition Release 9.2.0.6.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.6.0 - Production

SQL> select table_name, compression
 2 from dba_tables
 3 where owner='AR'
 4 and table_name = 'AP_INVOICES_ALL';

TABLE_NAME COMPRESS
------------------------------ --------
AP_INVOICES_ALL ENABLED

SQL> ALTER TABLE AP_INVOICES_ALL ADD TRANSMISSION_FLAG VARCHAR2(1);
ALTER TABLE AP_INVOICES_ALL ADD TRANSMISSION_FLAG VARCHAR2(1)
 *
ERROR at line 1:
ORA-22856: cannot add columns to object tables

Given that range and composite partitioning can separate data into distinct
partitions, consider using the table compression feature to compress those
partitions that are read only. This allows more data to be kept online, as well as
reducing the physical storage costs.

Database Partitioning for Oracle E-Business Suite Page 26

In summary, restrictions on using table compression are as follows:

• Can be used for RANGE or LIST partitions

• Can not be used with HASH partitions or HASH or LIST sub-partitions

Implementing Compression
Table compression can be implemented in a number of different ways such as:

• Converting an existing compressed table to a compressed one

• Creating a new compressed table

• Adding compressed partitions to an uncompressed table

Creating a Compressed Table
This can be achieved by adding the compressed clause to the create table
statement.

Example: Creating a compressed table:
CREATE TABLE OE_ORDER_LINES_ALL (
 LINE_ID NUMBER NOT NULL,
 ORG_ID NUMBER,
 HEADER_ID NUMBER NOT NULL,
 LINE_TYPE_ID NUMBER NOT NULL,
 LINE_NUMBER NUMBER NOT NULL,
 ORDERED_ITEM VARCHAR2(2000),
 OPEN_FLAG VARCHAR2(1) NOT NULL
)
 COMPRESS;

Converting Tables to Compressed Tables:

Using the ALTER TABLE command with the COMPRESS clause you can
compress a database table.
ALTER TABLE AP_INVOICES_ALL MOVE COMPRESS;

To speed up this process you can also use the parallel option and specify the
number of parallel workers. Keep in mind that this may affect your overall system
performance.
ALTER TABLE RA_CUST_TRX_LINE_GL_DIST_ALL MOVE PARALLEL 20 COMPRESS;

Example: Compressing an Existing Table
(Performed under Oracle E-Business Suite 11.5.10 CU2 (Vision
Database)/RDBMS ver: 9.2.0.6.0)

Before compression:

TABLE_NAME NUM_ROWS BYTES GB
------------------------------ ---------- ---------- -------
AP_INVOICES_ALL 19817 8388608 .008

Database Partitioning for Oracle E-Business Suite Page 27

After Compression:

TABLE_NAME COMPRESS
------------------------------ --------
AP_INVOICES_ALL ENABLED

TABLE_NAME NUM_ROWS BYTES GB
------------------------------ ---------- ---------- -------
AP_INVOICES_ALL 19817 2359296 .00225

Example: Compressing Large Tables (Large Volume Oracle E-Business
Suite Customer 10.5TB Database).
(Performed under Oracle E-Business Suite 11.5.10 CU2 (10.5TB Production
Database)/RDBMS ver: 10.2.0.2.0)

Before compression:

TABLE_NAME NUM_ROWS BYTES GB BLOCKS EMPTY_BLOCKS
------------------------------ ---------- ---------- ---------- ---------- ------------
GL_JE_LINES 540851270 1.4076E+11 134.243438 17058752 0
GL_IMPORT_REFERENCES 243433330 9.5104E+10 90.6981875 11602728 0
RA_CUST_TRX_LINE_GL_DIST_ALL 481210970 8.9921E+10 85.75575 10922809 0

After Compression:

TABLE_NAME NUM_ROWS BYTES GB BLOCKS EMPTY_BLOCKS
------------------------------ ---------- ---------- ---------- ---------- ------------
GL_JE_LINES 540851270 3.6342E+10 34.65825 17058752 0
GL_IMPORT_REFERENCES 243433330 2.1499E+10 20.5035 11602728 0
RA_CUST_TRX_LINE_GL_DIST_ALL 481210970 1.8341E+10 17.490875 10922809 0

Creating compressed tablespaces:

CREATE TABLESPACE USER_DATA
 DATAFILE 'diska:tabspace_file2.dat' SIZE 20M
 DEFAULT COMPRESS STORAGE (…);

Database Partitioning for Oracle E-Business Suite Page 28

Practical Partitioning for Oracle E-Business Suite

Database Partitioning for Oracle E-Business Suite Page 29

WHEN TO USE PARTITIONING?

Decision Process: Steps for Creating Partitioned Tables/Indexes
It is well known that the basic reasons for partitioning tables and indexes include
performance and manageability. Other important reasons include archiving,
purging, and data movement resulting from changes in the data lifecycle. It is
important to employ an optimal partitioning scheme and partition key, to help
ensure the best performance.

There are a number of reasons, for using
custom partitioning tables and indexes it

is therefore important to employ the
optimal partitioning scheme and partition

key, to help achieve your goal.

Step 1 – Is Partitioning Necessary?
There are often cases where customers have a performance issue with a particular
flow or process; e.g. a concurrent program where the evidence suggests that
partitioning a particular table/set of tables will resolve the problem. As with all
performance issues, start by analyzing the root cause of the problem. In the vast
majority of cases, performance issues can be solved by means other than
partitioning. Customers are encouraged to work with Oracle Support Services for
all standard code performance issues.

Partitioning a table may not necessarily be
the best solution to a performance

problem, that you are encountering. In
some cases your performance issue can

be solved by means other than
partitioning.

Some of the reasons why partitioning should be considered are as follows:

1. Performance – Users complain that a particular page or concurrent request
is running too slowly, in particular against tables with high volumes. If the
data being accessed is within a specified range, partitioning may be an ideal
solution. The goal should be to optimize access to specific data sets (usually
current), while still maintaining historical data online. It is very simple to
determine which are the largest tables within your Oracle E-Business Suite
implementation.

If archiving and purging are done before an upgrade is performed, they
can help contribute to the reduction of time taken to upgrade.

2. Archiving/Purging - Oracle E-Business Suite includes several archive and
purge routines that will remove data from your system that is no longer
required. This may reduce the overall data volumes and therefore improve
performance by reducing the amount of I/O and associated CPU usage.

3. Integration with Oracle Information Lifecycle Management
Information Lifecycle Management (ILM) is concerned with everything that
happens to data during its lifetime. ILM is an approach to move less
frequently accessed data to cheaper storage and therefore reduces the total
cost of ownership.

4. Simplified Administration – Reduced backup and recovery times are
possible due to the ability to limit administrative activities to specific
partitions. For example, only certain partitions will need to be backed up or
recovered (not applicable to hash partitioning).

Database Partitioning for Oracle E-Business Suite Page 30

Step 2 - Should I Partition This Object?
Once you have identified a table or index as a candidate for partitioning, you need
to answer the following questions:

Once a table has been identified a table or
an index that appears to be a suitable

candidate for partitioning, detailed
analysis is necessary to establish the best

partitioning approach.

• What is the functional use of the table, i.e., what exactly does the table store?
This will help determine how the table is being used within the Oracle E-
Business Suite, e.g. is this table representing a key entity, such as an invoice.

• How is the data accessed? There are several methods to determine access
paths, such as Statspack, AWR. or Partition Advisor (an Enterprise Manager
Plug-in). These tools should be run over at least a complete monthly business
cycle to ensure that you understand how a particular table is accessed. Traces
for a particular set of OAF/HTML screens, Oracle Forms, and/or
concurrent requests can also help in the diagnosis.

• Which other modules or business flows use this table? Tables are generally
used by multiple products e.g. HZ_PARTIES, GL_PERIODS.

• What is the growth rate and patterns of this table? By analyzing the statistics
over a period of time, it is possible to understand the growth rate and
patterns of the data. For example, a posting program may set the
POSTED_FLAG to “N” for new records and then set then to null once they
have been posted. This means that over time, 90% of the table will have rows
with null values in this column.

Database Partitioning for Oracle E-Business Suite Page 31

Step 3 - Which Partitioning Method Should I Use?
In order to determine the optimal table partitioning method for a particular
implementation, refer to the summary table below. For indexes, also evaluate
different indexing methods: global and local partitioned, and prefixed and
nonprefixed indexes.

After it has been determined that a table or
index will benefit from partitioning, the
next step is to identify an appropriate

partitioning strategy.

Partitioning Strategy When to Use?

Range Convenient for partitioning historical and transaction data, as the boundaries of range partition define the order of partition in
tables and indexes.
Useful for tables which have a natural partition key such as OPEN_FLAG, PERIOD_NAME, PLAN_ID and the majority
of the access paths are based on this key. Good for SQL that primarily scans data based on time periods or key values.

List Used when rows are to be mapped to a particular partition based upon a specific value.
Note: Partition key is based on a single column.

Hash This distributes data in a manner that does not correspond to either a logical or business view of data and is not an effective
way to manage historical data.
It shares some characteristics with range partitioning e.g. partition pruning. Use it to avoid data skew across partitions. The
Oracle database hashes the data resulting in approximately equal stripes across devices, thus enabling I/O to be maximized
while avoiding hot spindles. It uses partition pruning & partition joins according to the partition key. It is useful for scalability
(minimizes block contention) and for tables that do not have natural partition keys.

Composite Partitioning

Range/Hash

This offers the benefits of range and hash partitioning. Typically, the Oracle database partitions by range, then creates sub-
partitions within each range to distribute the data. Data placed within these partitions is logically ordered by the boundaries
that define the range. Useful for tables, which have a natural partition key, however, range alone would lead to wide skews.
Note: Partitioning of data within the sub-partition has no logical order.

Composite Partitioning

Range/List

Offers the benefits of range and list partitioning, Oracle database partitions by range and then creates sub-partitions for each
specific value.
Generally not useful for the Oracle E-Business Suite.

Step 4 - Identifying the Partition Key
There will be a natural and logical partition key for many large transaction
tables/entities. This will typically be the column, which is most frequently used as
the predicate to access the data. As an additional validation step, re-examine which
SQL statements are using the table by reviewing the AWR or Statspack SQL
repository.

At the heart of any good partitioning
strategy lies the choice of a good

partitioning key. Typically, this is the
column that is most frequently used to

access the data.

When selecting a partition key, consider what happens when an update takes place
on the column that the partition key is based on. An update may result in row
migration, which will cause the loss of partition independence. This actually causes
partition dependence, as an update statement for example will translate into a
delete statement, followed by an insert statement.

Consider partitioning the GL_BALANCES table. Queries often include the
PERIOD_NAME column and therefore this would be a good candidate partition
key. Whenever any particular query includes the PERIOD_NAME, the optimizer
uses partition pruning and only accesses those partitions that match the required
PERIOD_NAME.

Database Partitioning for Oracle E-Business Suite Page 32

Step 5 – Performance Check & Access Path Analysis
It is important to ensure that your partitioning strategy does not cause performance
regressions and therefore it is necessary to test your chosen partitioning strategy.
For example, ensure that the transactions access the correct number of partitions.
Always thoroughly test your newly partitioned tables and indexes before
introducing them into a production instance. Remember that an inefficient
partitioning scheme for a given table will result in poor performance.

You can confirm your partitioning strategy by performing some basic explain plan
analysis. For example, test to check the optimizer is accessing the correct number
of partitions using the DBMS_XPLAN tool (which has been available since Oracle
8i) as this will verify that partition pruning is occurring. The output produced by
this tool will include the columns PSTART and PSTOP. In the example below, the
optimizer had to scan all 32 partitions.

UPDATE /*+ ROWID (ALB) */ ap_liability_balance ALB
 SET (ALB.vendor_id,
 ALB.vendor_site_id) = (SELECT AI.vendor_id,
 AI.vendor_site_id
 FROM ap_invoices_all AI
 WHERE AI.invoice_id =
 ALB.invoice_id),
 ALB.creation_date = SYSDATE,
 ALB.created_by = 1,
 ALB.last_update_date = SYSDATE,
 ALB.last_updated_by = 1,
 ALB.last_update_login = -1
 WHERE ALB.rowid
 BETWEEN chartorowid(:l_start_rowid) AND
 chartorowid(:l_end_rowid)

Execution Plan:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	UPDATE STATEMENT		176K	9M	199K (3)	00:39:57		
1	UPDATE	AP_LIABILITY_BALANCE						
* 2	FILTER							
3	PARTITION HASH ALL		176K	9M	199K (3)	00:39:57	1	32
* 4	TABLE ACCESS BY ROWID RANGE	AP_LIABILITY_BALANCE	176K	9M	199K (3)	00:39:57	1	32
5	TABLE ACCESS BY INDEX ROWID	AP_INVOICES_ALL	1	19	3 (0)	00:00:01		
* 6	INDEX UNIQUE SCAN	AP_INVOICES_U1	1		2 (0)	00:00:01		

Predicate Information (identified by operation id):

 2 - filter(CHARTOROWID(:L_START_ROWID)<=CHARTOROWID(:L_END_ROWID))
 4 - access("ALB".ROWID>=CHARTOROWID(:L_START_ROWID) AND "ALB".ROWID<=CHARTOROWID(:L_END_ROWID))
 6 - access("AI"."INVOICE_ID"=:B1)

Step 6 – Partitioned Table Creation and Data Migration
Two methods can be employed to migrate data to a partitioned table. Each method
has its own advantages and disadvantages in terms of rollback segment, redo log,
and buffer cache usage. Always ensure that there is a method in place to revert to a
non-partitioned table if problems ensue. Some methods for migration are more
simple and straightforward than others and therefore you will need to analyze the
data and estimate how many partitions you will have to create.

Database Partitioning for Oracle E-Business Suite Page 33

It is always the best practice to create the indexes after the data has been
successfully migrated to the newly created partitioned table.

You can use SQL*LOADER to import/export and datapump utilities to load or
unload data stored in partitioned tables. These utilities are all partition and
subpartition aware.

Method: 1 – Straight Insert

INSERT /*+ APPEND PARALLEL*/ INTO RA_CUSTOMER_TRX_ALL_PART
SELECT * FROM RA_CUSTOMER_TRX_ALL

This method is the simplest. If you choose to use this method, it is recommended
that you use the direct-path-insert method, using the APPEND hint. In addition,
since this statement will generate a large amount of undo and redo logs, it is
recommended to perform the insert with the NOLOGGING option and change it
back to LOGGING after you are done.

As part of the insert, records will go to the correct partitions after creating the
partitioned table.

This procedure could further be enhanced by executing it in parallel.

The steps for this method can be summarized as follows:

1. Create an empty partitioned table using the partitioned clause and with the
parallel option. The table name must be of a different name to the non-
partitioned table. The assumption is that having performed the analysis, the
partition key would be known as well as the exact number of partitions that
need to be created.

2. Populate data for required partition from the nonpartitioned table.

3. There are a number of performance enhancing features you can apply to
your INSERT or SELECT SQL statement such as:

• Consider using the APPEND hint with the INSERT, this is an
easy code change and provides good performance. If logging is
enabled and indexes are present then the INSERT /*+
APPEND */ hint may not be effective.

• To minimize the overhead of index maintenance, drop indexes
prior to migration and recreate them once the partitioned table
has been populated.

4. Rename the partitioned table to the original table or change the synonym.

5. Build table indexes for partitioned table.

6. Gather statistics for the new objects.

Database Partitioning for Oracle E-Business Suite Page 34

Oracle Data Pump
Oracle Data Pump was introduced in

Oracle 10gR1. It allows very high-speed
movement of database and forms the
basis of Oracle’s new data movement

utilities, Data Pump Export and Data Pump
Import. Data Pump also has the added

benefit of allowing you to specify whether
to move a subset of data using data filters
which are specified as part of Export and

Import parameters.

Data Pump is a new utility that is available in Oracle 10gR1 and replaces the
existing import (imp) and export (exp) utilities. Note that both of the existing
utilities are still shipped with the latest versions of the database and are still fully
supported. Data Pump does not work with utilities older than the 10g R1 and
therefore database Dump files generated by the new Data Pump Export utility are
not compatible with dump files generated by the original Export utility. Therefore,
files generated by the original Export (exp) utility cannot be imported with the
Data Pump Import (impdp) utility.

Any job submitted by Data Pump is run within the database and this feature makes
any job independent of the standalone client that was used to submit the import or
export process. This also allows Database Administrators to submit and monitor
jobs independently.

The Data Pump command line clients, expdp and impdp, invoke the Data Pump
Export utility and Data Pump Import utility and have a similar interface to the
original export (exp) and import (imp) utilities. Oracle Data Pump offers many
features over and above the existing import and export utility such being able to
specify multiple threads to execute the Data Pump job.

Data Pump Access Methods

Data Pump uses direct path and external tables access methods to load and unload
table row data. Both of these methods use the same external data representation, so
they can be used interchangeably. Therefore, data unloaded with one method can
be loaded using the other. Data Pump automatically chooses the fastest method
appropriate for each table. By default, Data Pump uses direct path for loading and
unloading data, when the table structure allows it. However, there are certain cases
where Data Pump uses external tables instead of direct path inserts:

• A global index on a multi-partitioned tables exists during a single-partition
load. This includes object tables that are partitioned.

• The table into which data is being imported is a pre-existing table which is
partitioned.

For Additional Information:
Refer to Oracle® Database Utilities10g Release 2 (10.2): Part 1 Oracle Data Pump for
further information.

Method 2 – Import/Export using Data Pump

This method makes use of the Data Pump Import and Data Pump Export as
provided with the Oracle Database. It requires additional space to hold the Data
Pump export file. It follows a similar procedure as the first method. Note that this
method has the added overhead of requiring you to perform an Data Pump Export

Database Partitioning for Oracle E-Business Suite Page 35

and then an Data Pump Import and will therefore take up twice the amount of
space. The Data Pump Export/Import can be done in parallel.

The steps for this method can be summarized as follows:

1. Since the import/export job is inside the database, if you want to export to
a file, the first thing that you must do is create a database DIRECTORY
object for the output directory and grant access to users who will be doing
exports and imports:

2. Populate the data for the required partition from the non-partitioned table.

• Create an empty partitioned table, .This must have a different
name to the non-partitioned table with the parallel option.

• Create a directory and grant READ and WRITE permissions on
the directory to other users.

• Grant READ or WRITE permissions to a directory object to a
particular user, this will allow the Oracle database to read this file.

• Once the directory access is granted to a user, this user can export
their database objects.

3. Export the non-partitioned table using Data Pump Export.

4. Rename existing non-partitioned table to <table-name_OLD>.

5. Rename the partitioned table to the original table or change the synonym.

6. Using Data Pump Import the non-partitioned table data into the partitioned
table.

7. Build table indexes.

8. Gather table statistics.

9. Remove the parallel option from newly partitioned table.

Database Partitioning for Oracle E-Business Suite Page 36

Step 7 – Maintenance Step
Once you have successfully created your partitioned table, there will be a number
of maintenance operations you will need to perform as and when the need arises.
For example, you may need to split or add partitions if new partition key values are
added or partitions are merged. You can also drop unused partitions or partitions
containing, historical data, which are no longer required.

PARTITION MAINTENANCE OPERATIONS
In general, some of the most common maintenance operations involve the
following:

There are several SQL commands
dedicated to partition maintenance.

• Adding Partitions/Subpartitions

• Dropping a Partition

• Moving a Partition

• Splitting and Merging Partitions

• Exchanging a Partition with a table

• Renaming a Partition

Changes made to most of the attributes of a partitioned table or index can be done
even after it has been created and populated. This is not the case with
nonpartitioned tables and indexes where most of the attribute changes are applied
to the entire object at object creation time.

Modifying the logical structure of a partitioned table can be done in the same
manner as for a non-partitioned table. For example, you can change the name of a
partition or modify one the physical properties of the partition such as the storage
attribute.

Similarly, the partition key definition of a partitioned table or index can be altered
by adding, dropping, merging, or splitting partitions of the table or index.

Maintenance operations can also be applied to individual partitions, such as
exchanging, moving, truncating, or dropping.

Adding Partition/Subpartition
Adding a partition will have different effects, depending on the type of
partitioning.

Range and List

For Range and List partitions, you can use the ALTER TABLE ... ADD
PARTITION statement. By default, this creates an empty partition segment after
the last existing partition (as the partition key range is not known). To add a
partition at the beginning or in the middle of a table, use the SPLIT

Database Partitioning for Oracle E-Business Suite Page 37

PARTITION statement. Adding a new partition does affect global indexes and this
means that existing global and local indexes remain usable.

For list partitions, the literal value has to be specified and this describes the
contents of the partition; it must not exist in any other partition of the table.

Hash and Hash Subpartition

When adding a new partition to an existing hash-partitioned table, the addition of
another hash partition causes the rehashing of rows. Rows from the existing
partition are then distributed into the new partition. These rows are determined by
the database based upon a hashing function. Depending on the type of table
(regular Heap Organized or Index-Organized), global and local index partitions
may become UNUSABLE or invalidated. These are described below:

• Regular (Heap) Organized Table - Indexes will be marked UNUSABLE
unless you specify the UPDATE INDEXES clause as part of the ALTER
TABLE statement. Local indexes for all the partitions are marked
UNUSABLE and must be rebuilt. Global indexes or all partitions of
partitioned global indexes are marked UNUSABLE and must be rebuilt.

• Index-Organized Table - Local indexes behave in the same way as with
heap tables and will be marked UNUSABLE. Global indexes remain
USABLE. Any new local index partitions are stored in the same tablespace
as the table partition, unless the index has a default storage tablespace
defined at index level.

Dropping Partitions
A partition can be dropped by using the ALTER TABLE ... DROP
PARTITION/SUBPARTITION command.

Table Partitions

Partitions can be dropped from range, list, or composite range-list partitioned
tables. For hash-partitioned tables or hash subpartitions of range-hash partitioned
tables, a coalesce operation has to be performed instead.

When a partition is dropped, the equivalent of a DDL statement is run to discard
all the rows stored in that partition. These rows cannot be rolled back. If a table
only contains a single partition, then the partition cannot be dropped; instead, the
table must be dropped.

To preserve the data in the partition, use the MERGE PARTITION statement
instead of the DROP PARTITION statement. Only the owner of the table or a
user with the DROP ANY TABLE privilege can use the DROP_TABLE_PARTITION
or TRUNCATE_TABLE_PARTITION clause.

Database Partitioning for Oracle E-Business Suite Page 38

Index Partitions

Local indexes cannot be dropped directly, instead when the table partition is
dropped, the corresponding local partition will also be dropped regardless of its
status.

When the partition of a global index that contains data is dropped, the next highest
partition is marked as unusable. On rebuild, the index entries are recreated in the
next highest partition, which is then marked as valid. The highest partition of a
global index cannot be dropped.

Moving Partitions
This can be done using the ALTER TABLE ... MOVE/MODIFY
PARTITION command.

Given the tablespace model for Oracle
Applications (OATM) – why would you

want to move a partition? OATM, although
highly recommended, is still optional.

Secondly, if Information Lifecycle
Management (ILM) is adopted using the

move partition command then it is
possible to move the partitions that need

to be archived onto cheaper disks.

Table Partitions

Unlike a nonpartitioned table that can be moved in a single step, table partitions
can only be moved one partition at a time. You can modify the physical storage
attribute of a partition by using the MOVE PARTITION clause of the ALTER
TABLE statement.

Some physical attributes such as TABLESPACE cannot be modified using the
MOVE PARTITION clause, but can be changed using the MODIFY
PARTITION clause. Modifying some other attributes, such as table compression,
affects only future storage and not existing data. Therefore, always make a point to
check.

Index Partitions

Depending on the type of database table, when a partition containing data is
moved, the indexes may be invalidated and marked UNUSABLE as follows:

Regular (Heap) Organized Table

All partitions will be invalidated/marked as UNUSABLE unless you specify
UPDATE INDEXES as part of the ALTER TABLE statement as follows:

• Global Indexes – All global indexes or all partitions of partitioned global
indexes are marked UNUSABLE and must be rebuilt.

• Local indexes – Each index partition is marked UNUSABLE and must be
rebuilt.

Index-Organized Table – Any local or global index defined for the partition
being moved remains USABLE.

To move a subpartition of a composite partitioned table or index, the keyword
SUBPARTITION is used instead of PARTITION. Typically, tables and indexes
are not moved but they are rebuilt. When moving a table partition or rebuilding an

Database Partitioning for Oracle E-Business Suite Page 39

index partition, all storage attributes can be specified, thus causing a change during
the move or rebuild.

Splitting Partitions
When a partition becomes too large it may take longer to backup, recover or
maintain. It is possible to split the partition, using the SPLIT PARTITION clause
of the ALTER TABLE or ALTER INDEX statement. This will cause the
redistribution of the contents of the partition into two new partitions. Hash
partitions or sub-partitions cannot be split.

Table Partitions

Table partitions are done if a partition that is range partitioned is split. This will
result in the creation of two new partitions, containing all the rows of the original
partitions. The first partition will contain all the values less than the partition key
value. The second partition will contain rows that are greater than or equal to the
partition key value.

When a list partition is split, the list of literals that are specified in the SPLIT
PARTITION clause will determine into which partitions the existing rows will be
inserted. Rows matching the partition key value will be placed into the first
partition, the remaining rows from the original partition will be placed into a
second partition.

Index Partitions

Depending on the type of database table, when a partition containing data is split,
two index partitions are created. These indexes may be invalidated/marked
UNUSABLE. This is summarized below:

Regular (Heap) Organized Table

All new partitions will be invalidated/marked as UNUSABLE unless you specify
UPDATE INDEXES as part of the ALTER TABLE statement. This is
summarized as follows:

• Global Indexes - All global indexes, or all partitions of partitioned global
indexes, are marked UNUSABLE and must be rebuilt.

• Local indexes – Each new index partition is marked UNUSABLE and must
be rebuilt.

Index-Organized Table – The database marks local indexes as UNUSABLE.
Global indexes remain USABLE.

Merging Partitions
The ALTER TABLE ... MERGE PARTITION statement can be used to merge
the contents of two partitions into a single partition. In addition, the two original
partitions are dropped, along with any corresponding local indexes. Due to the

Database Partitioning for Oracle E-Business Suite Page 40

nature of hash partitioning, it is not possible to merge hash-partitioned tables or
hash subpartitions of a range-hash partitioned table.

Table Partitions

When merging two adjacent range partitions into one partition, the resulting
partition inherits the higher or upper boundary of the two merged partitions. It is
not possible to merge nonadjacent range partitions.

Any two list partitions can be merged, the two partitions do not need to be
adjacent, as there is no ordering of list partitions. The resulting single merged
partition consists of all of the data, from the original two partitions. If a default list
partition is merged with any other partition, the resulting partition will still be the
default partition.

Index Partitions

Depending on the type of database table, when partitions containing data are
merged into a single partition, the indexes may be invalidated marked UNUSABLE.
This is summarized below:

Regular (Heap) Organized Table

All new partitions will be invalidated/marked as UNUSABLE unless you specify
UPDATE INDEXES as part of the ALTER TABLE statement otherwise:

• Global Indexes - All global indexes or all partitions of partitioned global
indexes, are marked UNUSABLE and must be rebuilt.

• Local Indexes – All local index partitions and subpartitions are marked
UNUSABLE and must be rebuilt.

Index-Organized Table – The database marks local indexes as UNUSABLE.
Global indexes remain USABLE.

Exchanging a Partition with a Table
Using the ALTER TABLE ... EXCHANGE PARTITION statement, range list
and hash partitioned tables can be exchanged with non-partitioned tables.

Exchanging a partition does not move any rows and the tables can be populated or
empty. Local indexes partitions are exchanged with matching nonpartitioned
indexes defined on the non-partitioned table. Global indexes on the partitioned
table will be marked UNUSABLE.

Indexes on the non-partitioned table, which are not exchanged with a local index,
are marked UNUSABLE and will only be maintained/valid if the UPDATE
GLOBAL INDEXES clause has been specified.

When exchanging a partition with a table, it is important to ensure that the partition
key values must be valid values of the partition. This will be verified before the

Database Partitioning for Oracle E-Business Suite Page 41

actual exchange takes place by scanning the nonpartitioned table rows. Using the
NOVALIDATE clause will skip this validation.

Renaming Partitions
When renaming partitions or sub-partitions, the partition name must be unique
within the affected table or index.

To rename a partitioned/nonpartitioned table or index, use one of these two
statements:

RENAME OE_ORDER_LINES_ALL TO OE_ORDER_LINES_ALL_BKP;

ALTER TABLE OE_ORDER_LINES_ALL RENAME TO OE_ORDER_LINES_ALL_BKP;

New names can also be assigned to subpartitions of a table by using the ALTER
TABLE ... RENAME PARTITION command.

Index partitions and subpartitions can be renamed in a similar fashion but the
ALTER INDEX syntax is used.

To rename an index partition, use the ALTER INDEX ... RENAME
PARTITION statement.

EXAMPLE OF HOW TO PARTITION A TABLE
The objective of partitioning a table is to ensure that the optimizer returns the rows
that satisfy the query criteria in the most efficient manner. The optimizer should
use partition pruning to minimize I/O and use partition-wise joins as necessary.

The purpose of analyzing the partitioning method and partition key selection is to
determine which flows within the Oracle E-Business Suite can potentially gain the
most from the partitioning functionality.

There are a number of approaches than can be used to determine the most
common access path used to access a particular table and hence, the partition key.

Example: Partitioning - AP_INVOICE_DISTRIBUTIONS_ALL (Oracle
Payables)

Functional Analysis
This table belongs to the Oracle Payables product. From a functionality
perspective, this table holds the invoice distribution information that is either
manually entered or system-generated. An invoice can comprise of one or more
distributions, and like other detail tables, this table can become very large.

For a larger Oracle E-Business Suite
customer this table can grow upwards of

48GB in size, with over 94 million rows.

TABLE_NAME NUM_ROWS BYTES GB
------------------------------ ---------- ---------- ----------
AP_INVOICE_DISTRIBUTIONS_ALL 94,870,050 5.0869E+10 48.512

Database Partitioning for Oracle E-Business Suite Page 42

How is this table used?

This is one of the main Oracle Payables tables. The tables supporting product
workbenches, such as the Invoice Workbench form, tend to grow very large and
are therefore ideal candidates for partitioning. Typically, the information is accessed
by concurrent programs and reports within the same module, but can also be
accessed by other interrelated products.

The diagram on the below shows how the
AP_INVOICE_DISTRIBUTIONS_ALL table is used by other products, such as
Oracle Purchasing, Oracle Bill of Materials, and Oracle Project Accounting.

If customizations are present or if further clarification of the access paths and keys
used is needed, then also review the SQL contained in the statspack/AWR
repositories. The advantage of this approach is that often different sets of users will
query or interact with the same information in different ways and then it is
important to be aware of all the different ways a particular table is accessed.

Database Partitioning for Oracle E-Business Suite Page 43

Index Analysis

The next step is to check whether the indexed columns are being used across the
majority of SQL statements. The Statspack/AWR repository can be useful in some
cases to identify which particular SQL is accessing a table. In some cases the output
from the Statspack/AWR report may be truncated depending on the length of the
SQL, in which case you use the V$SQL table to get the complete SQL based upon
the hash value shown in the Statspack/AWR report and then use the explain plan
tool to generate an explain plan. In most cases it is better to take several traces of
different flows that make use of the table in question.

The following table shows that composite indexes that include the INVOICE_ID
column on the leading edge in most cases have the highest number of distinct keys
(DK).
Index Name Rows DK Column Name
------------------------------ ----- ------ ------------------
AP_INVOICE_DISTRIBUTIONS_N13 15.82m 133562 PROJECT_ID
 TASK_ID
AP_INVOICE_DISTRIBUTIONS_N14 92.32m 40893 PA_ADDITION_FLAG
 PROJECT_ID
 REQUEST_ID
AP_INVOICE_DISTRIBUTIONS_N15 85389 64627 AWT_INVOICE_PAYMENT_ID
AP_INVOICE_DISTRIBUTIONS_N16 250673 250664 AWT_INVOICE_ID
AP_INVOICE_DISTRIBUTIONS_N17 10 8 RCV_TRANSACTION_ID
AP_INVOICE_DISTRIBUTIONS_N18 91.04m 2.19m ACCOUNTING_EVENT_ID
AP_INVOICE_DISTRIBUTIONS_N19 66.2m 1
 INVENTORY_TRANSFER_STATUS
AP_INVOICE_DISTRIBUTIONS_N2 97.41m 2 POSTED_FLAG
AP_INVOICE_DISTRIBUTIONS_N20 62518 27319 PREPAY_DISTRIBUTION_ID
AP_INVOICE_DISTRIBUTIONS_N21 0 0 AWARD_ID
AP_INVOICE_DISTRIBUTIONS_N23 92.16m 92.16m RELATED_ID
AP_INVOICE_DISTRIBUTIONS_N24 0 0
 CORRECTED_INVOICE_DIST_ID
AP_INVOICE_DISTRIBUTIONS_N25 734737 82280 PARENT_REVERSAL_ID
AP_INVOICE_DISTRIBUTIONS_N26 103.16m 10.28m OLD_DISTRIBUTION_ID
AP_INVOICE_DISTRIBUTIONS_N27 99.52m 71.18m INVOICE_ID
 OLD_DIST_LINE_NUMBER
AP_INVOICE_DISTRIBUTIONS_N28 29.24m 1.55m
 CHARGE_APPLICABLE_TO_DIST_ID
AP_INVOICE_DISTRIBUTIONS_N29 14.68m 14.68m DETAIL_TAX_DIST_ID
AP_INVOICE_DISTRIBUTIONS_N3 94.73m 201701 DIST_CODE_COMBINATION_ID
AP_INVOICE_DISTRIBUTIONS_N30 0 0 BC_EVENT_ID
AP_INVOICE_DISTRIBUTIONS_N4 93.25m 6759 ACCOUNTING_DATE
AP_INVOICE_DISTRIBUTIONS_N5 87.08m 157980 BATCH_ID
AP_INVOICE_DISTRIBUTIONS_N6 95.78m 88 ASSETS_ADDITION_FLAG
 ASSETS_TRACKING_FLAG
 POSTED_FLAG
 ORG_ID
AP_INVOICE_DISTRIBUTIONS_N7 5.52m 316273 PO_DISTRIBUTION_ID
AP_INVOICE_DISTRIBUTIONS_U1 93.75m 93.75m INVOICE_ID
 INVOICE_LINE_NUMBER
 DISTRIBUTION_LINE_NUMBER
AP_INVOICE_DISTRIBUTIONS_U2 95.24m 95.24m INVOICE_DISTRIBUTION_ID

An example of SQL that accesses this table is as follows:

select sum(--decode(aphd.pay_dist_lookup_code,
 --'EXCHANGE RATE VARIANCE', -1 * aphd.amount,
 aphd.amount)
 from ap_payment_hist_dists aphd,
 ap_invoice_distributions_all aid,
 ap_payment_history_all aph
 where aid.invoice_id = p_inv_rec.invoice_id
 and aid.invoice_distribution_id = aphd.invoice_distribution_id
 and aphd.pay_dist_lookup_code in ('CASH', 'DISCOUNT', 'AWT')
 and aph.posted_flag = 'Y'
 and aph.payment_history_id = aphd.payment_history_id
 and aph.transaction_type in
 ('PAYMENT CLEARING', 'PAYMENT UNCLEARING',

Database Partitioning for Oracle E-Business Suite Page 44

 'PAYMENT CLEARING ADJUSTED')

the explain plan is shown in the following table.

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		1	63	211 (1)
1	SORT AGGREGATE		1	63	
2	NESTED LOOPS		44	2772	211 (1)
3	NESTED LOOPS		44	1672	123 (1)
4	TABLE ACCESS BY INDEX ROWID	AP_INVOICE_DISTRIBUTIONS_ALL	44	616	14 (0)
* 5	INDEX RANGE SCAN	AP_INVOICE_DISTRIBUTIONS_U1	44		4 (0)
* 6	TABLE ACCESS BY INDEX ROWID	AP_PAYMENT_HIST_DISTS	1	24	3 (0)
* 7	INDEX RANGE SCAN	AP_PAYMENT_HIST_DISTS_N2	1		2 (0)
* 8	TABLE ACCESS BY INDEX ROWID	AP_PAYMENT_HISTORY_ALL	1	25	2 (0)
* 9	INDEX UNIQUE SCAN	AP_PAYMENT_HISTORY_U1	1		1 (0)

Predicate Information (identified by operation id):

 5 - access("AID"."INVOICE_ID"=TO_NUMBER(:B0))
 6 - filter("APHD"."PAY_DIST_LOOKUP_CODE"='AWT' OR "APHD"."PAY_DIST_LOOKUP_CODE"='CASH' OR
 "APHD"."PAY_DIST_LOOKUP_CODE"='DISCOUNT')
 7 - access("AID"."INVOICE_DISTRIBUTION_ID"="APHD"."INVOICE_DISTRIBUTION_ID")
 8 - filter(("APH"."TRANSACTION_TYPE"='PAYMENT CLEARING' OR "APH"."TRANSACTION_TYPE"='PAYMENT
 CLEARING ADJUSTED' OR "APH"."TRANSACTION_TYPE"='PAYMENT UNCLEARING')

AND "APH"."POSTED_FLAG"='Y')
9 - access("APH"."PAYMENT_HISTORY_ID"="APHD"."PAYMENT_HISTORY_ID")

The choice for partition key and partition strategy is determined by analyzing how
the data is accessed. This analysis provides clues to the partitioning approach that
will provide the best performance.

Conclusion

The INVOICE_ID is a good column to use a partition key, given its functional
importance and frequent usage. In addition, it is fairly unique and has a high degree
of selectivity so the optimizer can make use of partition pruning. We now have to
decide on what partitioning method to use. List partitioning can be ruled out as it
doesn’t make sense to use it in this scenario. This only leaves hash or range
partitioning. Since there is a natural partitioning key and given that the vast majority
of access to this table will be made by INVOICE_ID, we use range partitioning.

Database Partitioning for Oracle E-Business Suite Page 45

Examples of Partition Keys for Oracle Applications Tables

Table name Table Description Suggested
Partitioning
Method

Suggested Partition
Key

Description

AP_INVOICES_ALL Contains one row for each
invoice.

Range INVOICE_ID This is the primary key for this
table and most queries against
this table will have this column
included, as this is the only
way to uniquely identify an
invoice.

RA_CUST_TRX_LINE_GL_DIST_ALL Holds accounting records for
revenue, unearned revenue, and
unbilled receivables for each
invoice or credit memo line.
Oracle Receivables creates one
row for each accounting
distribution. At least one
accounting distribution must
exist for each invoice or credit
memo line.

Range or List SET_OF_BOOKS_ID The financial calendar is
broken into a fixed number of
periods. Although this is a very
unselective column due to the
low number of distinct values,
this column allows us to
naturally segregate the data
based on a time/period
component. This will be
especially advantageous for
concurrent programs, which
access a particular
SET_OF_BOOKS_ID.

GL_IMPORT_REFERENCES Stores individual transactions
from sub-ledgers that have been
summarized into Oracle General
Ledger journal entry lines
through the Journal Import
process.

Range JE_HEADER_ID The GL data model is
comprised of Batches,
Headers, and Lines. Typically
when joining to these tables,
either directly or top-down
(e.g. from batches) or bottom-
up (e.g. from line level), in the
majority of cases this column
will be used to uniquely
identifies a header record.

AP_AE_LINES_ALL Stores the accounting
representation for a particular
transaction in terms of balanced,
debits or credits entries. These
are both in transaction currency
as well as functional currency.
Additionally, other important
information such as the account
and other reference information
pointing to the original
transaction is also stored.

Range or Hash AE_LINE_ID This is the primary key for this
table. This column will
uniquely identify a line record
in the table. In most cases this
column is used to join to this
table and certainly can benefit
from partitioning as CBO
could partition prune based on
AE_LINE_ID.

PA_EXPENDITURE_ITEMS_ALL Stores the smallest categorized
expenditure units charged to
projects and tasks.

Range EXPENDITURE_ITEM_ID This is a system generated
number that uniquely identifies
the expenditure item and is
used a common access and
filter predicate of this table.

Database Partitioning for Oracle E-Business Suite Page 46

Table name Table Description Suggested
Partitioning
Method

Suggested Partition
Key

Description

PA_EXPENDITURE_ITEMS_ALL Hash ORGANIZATION_ID This column identifies the
organization that owns the
non–labor resource that was
utilized as the work was
performed. This column is
only populated for usage
items. Given that each row in
this table will be in the
context of an
ORGANIZATION_ID, this
column provides a way to
naturally segregate the data.

GL_BALANCES Stores actual, budget and
encumbrance balances for detail
and summary accounts. Also
ledger currency, foreign
currency, and statistical balances
for each accounting period that
has ever been opened.

Range PERIOD_NAME The PERIOD_NAME name
column is the most commonly
used to join to this table, as all
the rows in this table are
always in the context of a
GL_PERIOD.
Note: An alternative way of
partitioning this table would be
to use list partitioning and still
use the PERIOD_NAME
column as the partition key.
This will of course mean there
will be more partitions as each
PERIOD_NAME will have its
own unique partition.

OE_ORDER_LINES_ALL Stores information for all order
lines in Oracle Order
Management

List OPEN_FLAG Popular filter condition used
on this table as functionally
orders can be OPEN or
CLOSED.

 Hash LINE_ID This column will uniquely
identify an order line and
therefore any joins to this table
will include this column.

PA_COST_DISTRIBUTION_LINES_ALL Stores information about the
cost distribution of expenditure
items. When a cost distribution
program processes an
expenditure item, it creates one
or more corresponding cost
distribution lines to hold the
cost amounts and the General
Ledger account information to
which the cost amounts will
post. Cost distribution lines
amount are implicitly debit
amounts.

Range EXPENDITURE_ITEM_ID This column is often used as
an access or filter predicate; by
using range partitioning the
CBO can ignore those
partitions which don’t contain
the value of the
EXPENDITURE_ITEM_ID.

 ORGANIZATION_ID Functionally all the
expenditure items will belong
to a particular organization,
and therefore this is a natural
way of segregating the data.

RA_CUSTOMER_TRX_LINES_ALL Stores information about
invoice, debit memo, credit
memo, bills receivable, and
commitment lines. For example,
an invoice can have one line for

Range CUSTOMER_TRX_LINE_ID System generated Invoice line
identifier that uniquely
identifies a customer
transaction line. This column is
used for common access &

Database Partitioning for Oracle E-Business Suite Page 47

Table name Table Description Suggested
Partitioning
Method

Suggested Partition
Key

Description

Product A and another line for
Product B. Each line requires
one row in this table.

filter predicates and could be
used by the optimizer to
disregard partitions that do
not contain the value of the
CUTOMER_TRX_LINE_ID.

WF_ITEM_ATTRIBUTE_VALUES Contains the data for the
attributes defined in the
WF_ITEM_ATTRIBUTES
table.

Range/Hash ITEM_TYPE/ITEM_KEY Queries against this table will
usually be specific to an
ITEM_TYPE. Typically,
customers will only use 5
different values for
ITEM_TYPE. However when
combined with the
ITEM_KEY column that has
a high number of distinct
values and selectivity, we get a
more efficient partitioning key
that gives us the best of both
partitioning methods.

Database Partitioning for Oracle E-Business Suite Page 48

PRACTICAL PARTITIONING CASE STUDY
In this section two customer product specific examples are given to demonstrate
further how of a particular table is partitioned.

Oracle General Ledger
The customer’s Financial Management System (FMS) database is currently 340 GB
in size and the General Ledger represents 90% of this data. The database is
dominated by three large GL tables and their associated indexes: GL_JE_LINES,
GL_BALANCES, and GL_DAILY_BALANCES.

The customer wants to get significant benefits in terms of manageability and
performance by partitioning these objects. This case study reviews the partitioning
strategy for the large GL tables such as GL_JE_LINES, GL_BALANCES and
GL_DAILY_BALANCES.

Background – Current Table Volumes

GL_JE_LINES

119 GB table – approx. 360,000,000 records (50 % of database)

GL_BALANCES

20 GB table – approx. 170,000,000 records (8% of database)

GL_DAILY_BALANCES

16 GB table – approx. 55,000,000 records (6% of database)

Strategy

Customer identified the partition key as PERIOD_NAME due to the selectivity of
the column. Customer’s column PERIOD_NAME is in the format MON-RR, e.g.
‘MAY-00’

The following statements show the partition range values necessary to achieve a
workable range of values for the character column PERIOD_NAME.

create table GL_JE_LINES (
….
….
)
partition by range (period_name)
(
partition APR00 values less than ('APR-01') tablespace data_apr00,
partition APR_OTHER values less than ('APR-50') tablespace
data_apr_other,
partition APR98 values less than ('APR-99') tablespace data_apr98,
partition APR99 values less than ('APR-AA') tablespace data_apr99,
partition AUG00 values less than ('AUG-01') tablespace data_aug00,
partition AUG_OTHER values less than ('AUG-50') tablespace
data_aug_other,
partition AUG98 values less than ('AUG-99') tablespace data_aug98,
partition AUG99 values less than ('AUG-AA') tablespace data_aug99,
partition DEC00 values less than ('DEC-01') tablespace data_dec00,
partition DEC_OTHER values less than ('DEC-50') tablespace
data_dec_other,

Database Partitioning for Oracle E-Business Suite Page 49

partition DEC98 values less than ('DEC-99') tablespace data_dec98,
partition DEC99 values less than ('DEC-AA') tablespace data_dec99,
..
..
..
partition SEP99 values less than ('SEP-AA') tablespace data_sep99,
partition OTHER values less than MAXVALUES tablespace data_other
);

As an example, the partition called ‘APR00’ will contain all the rows where
period_name = ‘APR-00’, and the partition name ‘APR99’ using the literal value
‘APR-AA’ is required to capture rows where period_name = ‘APR-99’. Note that
the partition called ‘APR_OTHER’ will contain any future April periods, i.e. ‘APR-
01’, ‘APR-02’, etc. In fact, each period has a partition (<MON>_OTHER) to catch
any future rows for that period.

The tables GL_BALANCES and GL_DAILY_BALANCES will be partitioned on
PERIOD_NAME using the same strategy as used with GL_JE_LINES.

Partition Maintenance

1. At month-end, the customer needs to create a new partition prior to the
Open Period process.

In the following example, the customer creates a new partition for APR-01
data:

ALTER TABLE GL_JE_LINES
split partition APR_OTHER
at ('APR-02')
into (partition APR01 tablespace data_apr01,
 partition APR_OTHER1 tablespace data_apr_other1);

Due to invalidation, the index will need to be rebuilt.

Note with the SPLIT command, the 'bucket' partition APR_OTHER
cannot retain its name hence it would be split into two (2) different names:
APR_OTHER1, which will become the new 'bucket' for future April
periods.

This process would also take place for GL_BALANCES and
GL_DAILY_BALANCES.

2. For purging data (based on PERIOD_NAME), just use the DROP partition
command after the data has been archived.

alter table gl_je_lines
drop partition SEP-98;

This would also drop any local indexes associated with this partition.

Index Strategy

The indexes associated with these tables are also very large and need to be created
as either local or global indexes depending upon their usage.

Database Partitioning for Oracle E-Business Suite Page 50

GL_JE_LINES Indexes

• Global Index:
GL_JE_LINES_N1 – 17GB (CODE_COMBINATION, PERIOD_NAME)

• Local Index:
GL_JE_LINES_U1 – 12GB (JE_HEADER_ID, JE_LINE_NUM)

GL-BALANCES Indexes

• Global Index:
GL_BALANCES_N1 – 5GB (CODE_COMBINATION, PERIOD_NAME)

• Local Index:
GL_BALANCES_N2 – 4GB (PERIOD_NAME)

• Global Index:
GL_BALANCES_N3 – 4GB (PERIOD_NUM, PERIOD_YEAR)

• Global Index:
GL_BALANCES_N4 – 590MB (TEMPLATE_ID)

GL_DAILY_BALANCES Indexes

• Global Index:
GL_DAILY_BALANCES_N1 – 2GB

(CODE_COMBINATION, PERIOD_NAME, CURRENCY_CODE)

• Local Index:
GL_DAILY_BALANCES_N2 – 1.2GB (PERIOD_NAME)

• Global Index:
GL_DAILY_BALANCES_N3 – 1.2GB

(PERIOD_YEAR, PERIOD_NUM)

• Global Index:
GL_DAILY_BALANCES_N4 – 152MB (TEMPLATE_ID)

The Benefits of This Partitioning Strategy

The following points summarize the main benefits:

1. Maintenance - Operations can take place on individual partitions.

2. Purge of historic data - Prior to partitioning the purge process for
GL_JE_LINES took approximately 36-48 hours to purge one month of
data. Partitioning means that it is possible to simply drop the partition and
deal with any global indexes.

3. Performance - Performance improvements of SQL through partition
pruning. Much of the Oracle E-Business Suite code accesses these large
tables by PERIOD_NAME. Some large process such as summary accounts
and open period should benefit from partitioning by period.

Database Partitioning for Oracle E-Business Suite Page 51

4. Read-only partitions – This customer placed old period partitions in read
only tablespaces as this reduced the cost of storage. This also has other
advantages as we don’t need to backup read-only tablespaces.

Oracle Payables

Background

A customer wanted to load multiple payment batches and transfer them to GL in
parallel. The main strategy was to partition by payment batch from loading to
accounting, this meant partitioning the main transaction tables by the BATCH_ID
column or equivalent. The requirement was to have independent parallel processing
in AP for payment batches. Given the current functionality of the product, for the
transfer to GL the customer needed to investigate the possibility of running
multiple batch posting or a single days post. In addition, Oracle Cash Manager was
used to for check reconciliation.

Payment batch postings allow parallel continuous runs of the load-pay-account-
transfer process. The single batch approach needs to wait until all processes have
finished the AP accounting stage before running a single ‘AP transfer to GL’
program. The functional requirement was that the AP/GL transfer logic must be
able to scan all partitions to summarize by account code during the transfer to GL.
To improve performance, it would be possible to accommodate the single transfer
to GL in the partitioning strategy without affecting the performance of the load-
pay-account phases. Since the load-pay-account is critical, this took precedence.

Data Analysis

The CHECK_ID and INVOICE_ID columns or related columns make up all or
part of the key of the tables partitioned by BATCH_ID . These are split across 64
hash partitions, with the option of moving towards 128 or beyond. Initially, the
customer considered using a sequence dispersal technique for the appropriate
CHECK_ID and INVOICE_ID columns, but instead decided to use Global
Indexes, which are available in 10gR2. This allowed an alternative partitioning
strategy using the CHECK_ID and INVOICE_ID columns with a number of
range partitions (98). As a number of concurrent processes insert into this table at
once and select from the same sequence, the indexes get very hot as new entries are
being inserted into the end section of the index. Rather than using a technique to
disperse the sequence, Oracle 10g2 and use Global Partitioned Indexes were
proposed as a solution.

Results

The following table shows the results of partitioning the Payables tables:

Database Partitioning for Oracle E-Business Suite Page 52

Object Name Type Column(s) Partition Type & Size
AP_ACCOUNTING_EVENTS_ALL TABLE ACCOUNTING_EVENT_ID Replace with HASH partition * 64
AP_ACCOUNTING_EVENTS_U1 INDEX ACCOUNTING_EVENT_ID LOCAL Hash 64

AP_ACCOUNTING_EVENTS_N1 INDEX SOURCE_TABLE, SOURCE_ID Make GLOBAL HASH Partition * 64

AP_ACCOUNTING_EVENTS_N2 INDEX ACCOUNTING_DATE LOCAL Hash 64
AP_ACCOUNTING_EVENTS_N3 INDEX REQUEST_ID LOCAL Hash 64
AP_ACCOUNTING_EVENTS_N4 INDEX EVENT_STATUS_CODE LOCAL Hash 64
AP_AE_HEADERS_ALL TABLE REQUEST_ID Hash 64
AP_AE_LINES_ALL TABLE REQUEST_ID Hash 64
AP_CHECKS_ALL TABLE CHECKRUN_NAME Hash 64
AP_CHECKS_N3 INDEX CHECKRUN_NAME LOCAL Hash 64
AP_CHECKS_N9 INDEX CHECK_NUMBER LOCAL Hash 64
AP_CHECKS_N4 INDEX PAYMENT_TYPE_FLAG LOCAL Hash 64
AP_CHECKS_N8 INDEX CHECKRUN_ID LOCAL Hash 64
AP_CHECKS_U1 INDEX CHECK_ID Make GLOBAL HASH partitioned index * 64

AP_INVOICES_ALL TABLE BATCH_ID Hash 64
AP_INVOICES_N1 INDEX LOCAL Hash 64

AP_INVOICE_DISTRIBUTIONS_ALL TABLE BATCH_ID Hash 64
AP_INVOICE_DISTRIBUTIONS_N14 INDEX LOCAL Hash 64

AP_INVOICES_INTERFACE TABLE SOURCE Range 0001..0064 (64 partitions) + 1 Catch all for 65 to 1024
AP_INVOICES_INTERFACE_N1 INDEX STATUS Index Dropped, need to check if required by Oracle Custom layer.

AP_INVOICES_INTERFACE_N2 INDEX SOURCE GROUP_ID Index Dropped, need to check if required by Oracle Custom layer.

AP_INVOICES_INTERFACE_U1 INDEX INVOICE_ID Make GLOBAL HASH, 64

AP_INVOICE_PAYMENTS_ALL TABLE INVOICE_PAYMENT_ID Consider increasing to 128 partitions
AP_INVOICE_PAYMENTS_N1 INDEX INVOICE_ID Make GLOBAL HASH partitioned index * 64

Database Partitioning for Oracle E-Business Suite Page 53

CONCLUSION
Partitioning is a very powerful database feature . This paper has explained database
partitioning and provided examples based from the Oracle E-Business Suite.
Partitions can be thought of as a layer between tables/indexes and tables spaces.
The advantage of partitioning is that optimizer is partition aware and excludes
unnecessary partitions from SQL transactions, therefore resulting in a performance
increase. The paper has also described the different functions and limitations of
each partitioning strategy and also reviewed compression as an complementary
strategy.

Partitioning is a very powerful database
feature that can return significant gains

when applied using an appropriate
strategy.

The use of custom partitioning within the
Oracle E-Business Suite is fully supported
and is something that should be explored.

This paper introduced partitioning for
customers of Oracle’s E-Business Suite

using practical examples from the Oracle
E-Business Suite.

The “bigger, better, and faster” hardware approach used by many customers to
address the challenges of increasing data volumes provides short-term relief, but
increases the total cost of ownership of an Oracle E-Business Suite
implementation. Upgrades may also require more careful planning due to volumes
of data involved.

Predicting how large a particular Oracle E-Business Suite implementation is going
to be is generally undertaken as a part of a standard sizing exercise. When very large
volumes of data are predicted, it makes sense to additionally consider partitioning,
and which strategy may be the most appropriate.

This paper has shown that in order to address both the space management and
performance needs, consider the normal daily business requirements to specific
subsets of data and define how that data is accessed. This will help define an
approach to effective deployment of the partitioning features, where tables and
indexes are broken down into smaller components. Partitioning is a very powerful
feature that can be implemented to reduce the disk costs by allowing you to
distribute tablespaces across a range of storage devices. Data that is rarely updated
can then be compressed to further reduce storage requirements.

In the second part of this paper , examples of partitioning tables and indexes in the
Oracle E-Business Suite have been given. The criteria for correct partition key and
partitioning method selection and other aspects such as migrating data into the
newly partitioned tables/indexes have also been described. It has also discussed the
additional partitioning maintenance operations that need to be considered.

This paper has described the following:

• Different database partitioning methods available

• When to use database partitioning for the Oracle E-Business Suite

• The steps need to be adhered to when partitioning

- Including data migration

• Examples of partitioning methods for some of the common product tables

• Customer partitioning case studies

Database Partitioning for Oracle E-Business Suite Page 54

REFERENCES
[1] Ahmed Alomari & Mohsin Sameen Oracle OpenWorld (2006):

Partitioning and Purging Best Practices for Oracle E-Business Suite
Available from: http://blogs.oracle.com/schan/2006/11/17

[2] Oracle Corporation:
Oracle® Database Concepts 10g Release 2 (10.2)
Chapter 18 Part Number B14220-02

[3] Oracle Corporation:
Oracle® Database Administrator's Guide 10g Release 2 (10.2)
Chapter: 17 Part Number B14231-02

[4] Metalink: 248857.1
Oracle Applications Tablespace Model Release 11i - Tablespace Migration Utility

REVISIONS
This white paper was first issued in February 2008.

Database Partitioning for Oracle E-Business Suite Page 55

http://blogs.oracle.com/schan/2006/11/17

APPENDIX A - ORACLE DATA DICTIONARY TABLE & VIEWS FOR
PARTITIONING

Summary of ALTER TABLE & ALTER INDEX clauses used for maintenance
operation for table and index partitions:-

• Add Partition – To add a new partition after the highest partition

• Drop Partition – To drop a partition including its indexes

• Exchange Partition – To change a partition into a non-partitioned
table and vice versa

• Merge Partition – To merge two adjacent partitions

• Modify Partition – To modify the storage parameters of a partition

• Modify default attributes – To modify the storage parameters
of all partitions

• Move Partition – To move a partition generally to defrag or to change
tablespace

• Rename Partition – Change name of a partition

• Split Partition – Split a partition into two

• Truncate Partition – Remove data of a partition

The following clauses are allowed with ALTER INDEX

• Drop Partition – Only a global index partition can be dropped

• Modify Partition – To modify the storage parameters of a partition

• Modify default attributes – To modify the storage parameters
of all partitions

• Rebuild Partition – To rebuild a partition generally to defrag or to
change

• Rename Partition – Change name of a partition

• SPLIT PARTITION – Split a partition into two

• UNUSABLE – To set some or all index partition as unusable

Database Partitioning for Oracle E-Business Suite Page 56

APPENDIX B - USEFUL DATABASE VIEWS

The following database view can be used to view partitioned tables and index
information.

View Description
DBA_TABLES Table structure, Partition Y/N
DBA_PART_TABLES DBA view displays partitioning information for all partitioned

tables in the database. Partition type, default values
ALL_PART_TABLES

USER_PART_TABLES
ALL view displays partitioning information for all partitioned
tables accessible to the user. USER view is restricted to
partitioning information for partitioned tables owned by the
user

DBA_TAB_PARTITIONS

ALL_TAB_PARTITIONS

USER_TAB_PARTITIONS

Display partition-level partitioning information, partition
storage parameters, and partition statistics generated by the
DBMS_STATS package or the ANALYZE statement.

DBA_TAB_SUBPARTITIONS

ALL_TAB_SUBPARTITIONS

USER_TAB_SUBPARTITIONS

Display subpartition-level partitioning information,
subpartition storage parameters, and subpartition statistics
generated by the DBMS_STATS package or the ANALYZE
statement.

DBA_PART_KEY_COLUMNS

ALL_PART_KEY_COLUMNS

USER_PART_KEY_COLUMNS

Display the partitioning key columns for partitioned tables.

DBA_SUBPART_KEY_COLUMNS

ALL_SUBPART_KEY_COLUMNS

USER_SUBPART_KEY_COLUMNS

Display the subpartitioning key columns for composite-
partitioned tables (and local indexes on composite-partitioned
tables).

DBA_PART_COL_STATISTICS

ALL_PART_COL_STATISTICS

USER_PART_COL_STATISTICS

Display column statistics and histogram information for the
partitions of tables.

DBA_SUBPART_COL_STATISTICS

ALL_SUBPART_COL_STATISTICS

USER_SUBPART_COL_STATISTICS

Display column statistics and histogram information for
subpartitions of tables.

DBA_PART_HISTOGRAMS

ALL_PART_HISTOGRAMS

USER_PART_HISTOGRAMS

Display the histogram data (end-points for each histogram) for
histograms on table partitions.

DBA_SUBPART_HISTOGRAMS

ALL_SUBPART_HISTOGRAMS

USER_SUBPART_HISTOGRAMS

Display the histogram data (end-points for each histogram) for
histograms on table subpartitions.

DBA_PART_INDEXES

ALL_PART_INDEXES

USER_PART_INDEXES

Display partitioning information for partitioned indexes.

DBA_IND_PARTITIONS

ALL_IND_PARTITIONS

USER_IND_PARTITIONS

Display the following for index partitions: partition-level
partitioning information, storage parameters for the partition,
statistics collected by the DBMS_STATS package or the
ANALYZE statement.

DBA_IND_SUBPARTITIONS

ALL_IND_SUBPARTITIONS

USER_IND_SUBPARTITIONS

Display the following information for index subpartitions:
partition-level partitioning information, storage parameters for
the partition, statistics collected by the DBMS_STATS
package or the ANALYZE statement.

DBA_SUBPARTITION_TEMPLATES

ALL_SUBPARTITION_TEMPLATES

USER_SUBPARTITION_TEMPLATES

Display information about existing subpartition templates.

Database Partitioning for Oracle E-Business Suite Page 57

Partitioning for the Oracle E-Business Suite
February 2008
Author: Mohsin Sameen
Primary Contributors: Andy Tremayne
Reviewers: Lester Gutierrez, Isam Alyousfi, Hadi Alatasi, Jin Soo Eo, Olcay Sarioglu, Dimas Chabane

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2008, Oracle. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

